Software Verification and Validation (VIMMDO052)

Introduction

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Synopsis

= |ntroduction
= Verification in the requirement phase
= Architecture verification and evaluation
= Verification of the detailed design
o Classic techniques

o Formal methods: model checking, equivalence checking

o Advanced methods: formal verification of extra-functional properties and timed
behavior, handling complex designs (large state spaces)

= Verification of the source code
o Code review, abstract interpretation, symbolic execution
o Classic techniques of proving program correctness
= Testing and test case generation
o Test design at unit level
o Integration and system testing
o Model based testing and test case generation
= Validation and assessment
= V&V in the maintenance phases

" |ntegrated approaches

Contents of the lecture

= Motivation

o What are the quality needs regarding software and what is
offered by the software industry?

o What is the role of software verification and validation
techniques?

= QOverview of the techniques of software V&V

o What are the typical techniques in the development
process?

= Development life cycle models
o What is the role of V&V in the different life cycle models?

= The role of development standards
o How systematic V&YV is realized?

Motivation

What are the quality needs regarding software and what is offered by the
software industry?

What is the role of software verification and validation techniques?

fuligng:
YETEM 1782

Expectations

= Service Level Agreements (SLA)
o Availability (telco servers): 99,999% (5 min/year outage)

= Safety critical systems:
o Tolerable hazard rate (THR)
o Safety integrity levels (SIL)

»

15 years lifetime:
1 failure in case of

failure for approx.

SIL Probability of dangerous failure per hour
per safety function
1 10°®<PFH < 10”
2 107 <PFH < 10°
3 108 < PFH < 10”7 (/Operation without
4

-9 -8
107 < PFH <10 Y\ll.OOO years???

750 equipment /\(

Different kinds of faults

Development phase Operational phase

 Specification faults « Hardware faults
* Design faults Configuration faults
* Implementation faults Operator faults

V&V during Fault tolerance
design (e.g. redundancy)

| _'* - -]
I;I B .
/ ‘can lead to can lead to {

human error

Software quality problems due to development faults

,Defibtech issues a worldwide recall of two of its defibrillator
products due to faulty self-test software that may clear a
previously detected low battery condition.” (February 2007)

,Cricket Communications recalls about 285,000 of its cell
phones due to a software glitch that causes audio problems
when a caller connects to an emergency 911 call. (May 2008)”

Nissan recalls over 188,000 SUVs to fix brakes (Update) o octorer 23 2013

Missan Motor Co. is recalling more than 188,000 Nissan and Infiniti SUVs worldwide to fix faulty brake control
software that could increase the risk of a crash.

=
Toyota recalling 1.9M Prius models globally for software update

Statistics for software projects

= Typical size of code
o 10 kLOC ... 1000 kLOC

= Development efforts:
o Big but average software: 0.1 — 0.5 person months / kLOC
o Safety critical software: 5-10 person months / kLOC

= Fault removal (review, testing, corrections):
o 45 - 75% of the whole development efforts

= Change of fault density
o 10 - 200 faults / kLOC occurring during development

1 Verification techniques

o 0.1 - 10 faults / kLOC before operation

How many bugs do we have to expect?

Maobility
|DB Networks
Logistics
How many ,,Bugs“ do we have to expect?

—

= Typical production type SW has 1 ... 10 bugs per 1.000 lines of code (LOC).
= Very mature, long-term, well proven software: 0,5 bugs per 1.000 LOC

= Highest software quality ever reported :
- Less than 1 bug per 10.000 LOC
- At cost of more than 1.000 US$ per LoC (1977)
» US Space Shuttle with 3 m LOC costing 3b US$ (out of 12b$ total R&D)
=» Cost level not typical for the railway sector (< 100€/LoC)

= Typical ETCS OBU kernel software size is about 100.000 LOC or more

- That means: 100 ... 1.000 undisclosed defects per ETCS OBU
+ Disclosure time of defects can vary between a few days thousands of years

Source: K-R. Hase: ,,Open Proof in Railway Safety Software”, FORMS/FORMAT Conference, Braunschweig, Germany

A study in Hungary

= Number of faults in 1 kLOC (embedded software):

o Manual development and testing: ~ 10 faults
o Tool-supported automated development: ~ 1-2 faults
o Automated development with formal methods: < 1 faults
Number of faults / kLOC
10 E B Implementation
25 @ Design
5 - : ﬂ -
[J Requirements
0
Traditional UML MDA MDA-+formal
Implementation 4,2 2,55 0 0
Design 4,4 2,2 1,6 0,1
Requirements 2,2 1,3 1 0,1

Distribution and cost of bugs

[l
| Analysis Conceptual Programming Design Test System Test Operation
Design
50% - T e
introduced ;Trd:;ﬁ:‘l:nd %) . ::Hiil of
& nr . '
40% - errors (in %) ! /" correction

; per eTTor
o

0% T

20%

10%

—

0%

Early V&V reduces cost!

Time {non-linear)

V&V: Verification and Validation

Verification

Validation

,Am | building the system right?”

,Am | building the right system?”

Check correctness and consistency of
development phases

Check the result of the development

Conformance of designs/models and
their specification

Conformance of the (finished) system
and the user requirements

Objective (based on facts); can be
automated

Subjective (influenced by user
expectations); checking acceptance

Fault model: Design and
implementation faults

Fault model: problems in the
requirements are also included

Not needed if implementation is
automatically generated from
specification

Not needed if the specification is correct
(very simple)

Example: Development of flight control SW

Objectives Distribution in DO-178B

45
.| Level A (66)
40 |
35 W Level B (65)
30 M tevel C{(57)

M Level D (28)

N e aw

Planning Dew. Verif. CM QA Cert.

Overview of the techniques

of software V&V

What are the typical techniques in the development process?

Who is concerned by V&V?

System Engineer e Verifying requirement specification

IANE ATl DTS T{3[sI M * Modeling and verifying designs

Developer, @6ele[=Ig \erifying source code, unit testing

Test Designer Designing test processes and techniques

Test Engineer e Test automation, integration and system tests
Safety Engineer e Assessment w.r.t. development standards

ol
I,

What are the typical development steps?

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

System
Engineer

Architect,

Designer

Developer,
Coder

Test Designer,
Test Engineer

Schedule and sequencing

depends on the lifecycle model
(see later)

L IIERENERENAR

Requirement Task V&YV criteria V&YV technique
analysis
. , : - Checklists
System Defining functions, |- Risks . -
e as _ . - raliure mode an
specification actors, use cases - Criticality _
effects analysis
Architecture
design
MOd UIe Book Data @ n_is [Acceleration Requirement Refinement and Verification]
deSign adqress «requirements
Y ‘Acvelaration
Aszzemble P A
=it «refines -7 . A
Module L wveritys
. . pubﬁsher «deri\feReqt:e \\\
implementation J— Aum—
«testCasex
FAILURE MODE & EFFECTS ANALYSIS (FMEA) Date 1A7000 Max Acceleration
System Rewsion: 13
. . Procezz Mame: Lett Front Seat Bett Install Process Mumber: SBT 445
Integratlon
Failure Mode A)Severity | B} Probability | C) Probability Risk
of Occurance | of Detection Preference
Rate 140 Rate 1410 Ratez1-10 | Humber (RPH}
10 =Most 10 = Highest 10=L 2 AoBC
SVStem Sever?a Prc-balgilitev Prob:lmv
dehvery 1) Select Wrong Color Sest Beit 5 4 5 60 B
271 Seat Bett Bokt Mot Fully Tightened g 2 g 144
Operation’ 31 Trim Cower Clip Misaligned 2 3 4 24
maintenance

System specification

— Task V&YV criteria V&YV technique
equirement
analysis - Completeness ,
Defining functional : - Reviews
System _ - Consistency , ,
P and non-functional o - Static analysis
Specitication : - Verifiability
requirements - Simulation
Architecture - Feasibility
design
Module
design
Analysis
Module [Reality }
implementation .
Design Implementation
N\ —p - TN
System space \ A 4
integration Modeling S

~ _ _ | Implementation

- structuring

o ' igni space
dZIsiviT - abstraction Designing N P

; - decomposition
Operation,

maintenance

System specification

Requirement
analysis

Task V&YV criteria V&YV technique

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

- Completeness

ini i - Reviews
Defining funct!onal _ Consistency |
and non-functional Ve - St~ analysis
requirements - veritiability tion
- Feasibility

Review:

1. Assembling a checklist

2. Presentation by the developer

3. Answering the questions of reviewers
4. Discussion, preparing the review report

Types of peer review:

Round robin: Different leader for reach module
Walkthrough: The developer “guides” the reviewers

Inspection: Based on a (formal) checklist

Requirement
analysis

System specification

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Task V&YV criteria V&YV technique
- Completeness S
i i - Reviews
Defining funct!onal _ Consistency | |
and non-functional Ve - Static analysis
requirements - veritiability _Simali®ion
- Feasibility

Example: Specification of an access control system (in Event-B):

Persons: prs # 0, p € prs (set)

Buildings: bld # 0, b € bld (set)
Authorization: aut € prs < bld (binary relation)
Situation: sit € prs —» bld (complete function)
Invariant: sit < aut

An event (change of situation):
pass = ANY p,b WHERE (p,b)eaut A sit(p)#b
THEN sit(p):=b END

Automated analysis is possible: Checking invariant for each event

Architecture design

Abstraction 4 _ _ _

Requirement | Analysis (structurlrlg the design space)

analysis Design space g

: Mapping
Structurin

System . S (automated)

specification design space
and mapping
Architecture
. v
design _)
Implementation space , Formality

Module

design

Module

implementation Task V&YV criteria V&YV technique

System - Decomposing - Function coverage |- Static analysis
Integration modules - Conformance of - Simulation

System - HW-SW co-design interfaces - Performance,

delivery - Designing - Non-functional dependability,
Operation, communication properties security analy5|s
maintenance

Module design (detailed design)

Requirement

: System model Requirement spec.
analysis
System /
specification F(.)Ijma.l y Automated mOdeI n
p
verification checking
Architecture
design
OK Counter-
Module example
design
Module
implementation
Task V&YV criteria V&YV technique
System - -
integration - Designing detailed | . . o o | Static analysis
behavior) , - Simulation
System algorithms and -
delivery (data structures, orotocols - Formal verification
algorithms) - Rapid prototyping
Operation,

maintenance

Module implementation

Requirlenjent Task V&YV criteria V&YV technique
analysis .
Code is - Checking coding

System - '

specification - Software Safe conventions
implementation - Verifiable - Code reviews

hi L : -
Arcdéicia;:‘ure - Maintainable - Static code ana|YSIS

";'00!”'6 - Verifying module |- Conformance to |- Unit testing

esign . . 5
& implementation module designs |- Regression testing
Module

implementation

System
integration

System
delivery

Operation,
maintenance

System integration

V&YV criteria

- Conformance of
- Integrating modules | integrated

- Integrating SW with | Pehavior
HW - Correct
communication

Task V&YV technique

Requirement
analysis

System

S - Integration testing
specification

(incremental)

Architecture
design

Module
design

Module
implementation

System
integration

System

Test Client : Frontend Server
delivery :

A

Operation,
maintenance

System delivery and deployment

Requirement
analysis

System
specification

Architecture

design Task V&YV criteria V&YV technique
Modul _ - System testin
design - Assembling - Conformance to I\>l| &
complete system | system specification |~ casUrements,
Module monitoring
implementation
o - Conformance to - Validation testing
System - Satisfying user _ _
integration : requirements and |- Acceptance testing
expectations : _
expectations - Alfa/beta testing
System
delivery
Operation,

maintenance

Operation and maintenance

Requirement

analysis
System Tasks during operation and maintenance:
specification - Failure logging and analysis (for failure prediction)

- V&V of modifications depending on the affected life cycle phases

Architecture

design
Module
design
Testing akorat g Test Case:
Module Consulting Rrees pfeparau'orsr

implementation

System Product
. . Development
integration ”M | N I-I ifecycle" Life-Cycle
System for each
delive ry 5 0 o Software
modification
Operation, Tost Heslis hoalyss Business Validation Testing

maintenance

Development life cycle models

What is the role of V&V in the different life cycle models?

Development life cycle models

= The role of life cycle models

o Handling the complexity of development
* Dividing the development into phases, milestones
* Basis for distributed / concurrent design and then integration

o Change management

* Handling the effects of requirement changes, modification and
maintenance

* |Introduction of new methods and tools

= Generic models of software development:
o Sequential development: Waterfall and V-model
o Evolutionary development: Rapid application development
o lterative development: Spiral model
o Model based development: 4G model
o lterative-incremental development: Unified Process

1. Waterfall model

Requirement e Verification:
analysis /w o .
Precondition for proceeding to the
System next step
specification /1 o
e Validation:
Architecture Prerequisite for operation phase
design j
Module
design /d
Module
implementation /_l
System
integration j
System
testing /1
Operation,

maintenance

1. Waterfall model

Requirement e \Verification:
analysis /1 Precondition for proceeding to the
L System next step
specification /1 e Validation:
LArchitecture Prerequisite for operation

design il }
L Module

design /d
L Module

implementation /_l

System

integration j
L System

= Modified waterfall model: e /1
Checking the effects of Lﬁ‘;?rff‘;";r;ce
changes / corrections
(e.g., regression testing)

2. The V-model

Operation,
maintenance
A

Requirement | > Systemval. | N System
analysis design validation
System | > Systemtest | » System
specification design verification
= Based on the \ /
waterfall model _ .
Archltgcture _______ Integratl_on test | o Syster_n
- We“_deflned V&V design design integration
for each step \ /
" Precise design of Module | __| Moduletest | __,| Module
the VeriﬁcatiOn, design design verification
testing and \ /
validation steps Modulo

implementation

Model based design: From V to Y model

Manual coding

“Common” automated
code generator is used

Certified automated
code generator is used

Design using formal
methods and tools

Life cycle

Reduction
of efforts

0%

-20%

-50%

-60%

estimated

»

40 50

>

Classic method: Cleanroom Software Engineering

= Origin:
o IBM proposal (1980s)
o US military developments (1990s)

= Goal:
o Verification based on formal models
o Fault avoidance instead of removal

" Principles:
o Use and verification of formal models

o Incremental development with quality control
(step-by-step increase of complexity)
o Statistical testing based on formal models
* Selecting the representative trajectories
* Manual validation of modeling

http://en.wikipedia.org/wiki/File:Cleanroom_entrance.jpg

3. Evolutionary development (RAD)

" Rapid development of an initial implementation then

refinement through several versions, based on user
feedback

o Explorative development: Discussed with users
* First version: Based on known requirements

o Rapid prototypes for the critical functions
 Validation using the prototype, re-working the prototype

o Can be applied in case of incompletely specified systems

= V&V characteristics:
o Increased role of prototype testing

o Increased role of integration testing
* Adding new functions

o Regression testing after modifications
 Existing functions remain correct

4. Iterative development: Spiral model

Goals,
alternatives,
constraints

Planning the next
phase

Risk analysis ,

Risk analysis ,

Risk analysis ,

Analysis of risks
and prototype for
critical functions

Requirements,
life-cycle plan

Concept of
operation

Unit test

Implementation
plan

Acceptance
test

Design and
verification

(cyclic)

5. The “4G” model

= Model based development []
o CASE tools . vlv—_l v ' —
o Property preserving | Panaiysie | [Prototyping] [sar] [S]
refinement v
o Model based verification pestar et

—

= |ntegration of approaches

Prototyping Spiral model
A nth iteration nth iteration

o Well-specified requirements: :
“Traditional” development ‘ o \
o Incompletely specified ~.

requirements: 6T
Rapid prototype development

o Formally specified ‘ e |«
requirements:

<
. |

Model based development <opmﬁm. y)
o With iterative design

6. Unified Process

=" |ncremental and iterative \. J\

o Phases divided into iterations (bound in time)

o Each iteration is a complete (mini) development cycle
o Different focus of verification in each phase

* Integration and regression testing is important

Incepion | Elaboration Consfruction Transition

I1 El1 | E2 | C1 c2 C3 C4 | T1 |[T2

Business Modeling h

Requirements T

Analysis & Design] |

Implementation | S

Tesl R B S e e R S Il i S

Deployment e

Time =

7. Agile software development

= Extreme Programming

O

Short iterations, focusing on operational code, regular (daily)
integration and status tracking (developers, users)

* Using build frameworks, testing is included
"Test first programming” concept:

* Functional tests based on “story card”

* Testing after each modification (new functions)

= Test Driven Development

O

Incremental, steps for each new function:

1. Writing test for the new function (test will fail)
2. Coding (for successful test)

3. Refactoring of the code with re-testing

Uses automated unit testing

The role of development standards

How systematic V&V is realized?

Use of standards: Safety critical systems

= Standards for development
o |EC 61508: Functional safety in electrical / programmable electronic systems
o EN50128: Railway control software
o 1SO 26262: Automotive software
o DO 178B: Airborne software
= Specification of safety functions
o Functionality: Intended to achieve or maintain a safe state
o Safety integrity: Probability that a safety-related system satisfactorily
performs the required safety functions
(under all stated conditions and within a stated period of time)
= Safety integrity levels
o Safety integrity assignment to functions: Based on risk analysis (of failures)
e Continuous operation: Tolerable rate of failures
* On demand operation: Tolerable probability of failure

o Tolerable Hazard Rate:
e Categories based on numerical ranges:SIL 1, 2, 3,4

Determining SIL

= Hazard identification and risk analysis -> Target failure measure

EUC Software SIL is at least the e
Frequency of r
hazardous event same as system SIL f
(with some exceptions ...) System Software
safety safety
integrity integrity
level level
/
4 4
Risk THR | 5| S KN 3 3
Consequence of 1 T 2 2
hazardous event Y 1 1
0 0
SIL Probability of dangerous failure per hour
per safety function
: . 10°<PFH < 10~
Risk analysis

107 <PFH < 10®
108 < PFH < 10~/
10° < PFH < 108

-> Function THR
-> Function SIL
-> (Sub)system SIL

A W[IN|[F

COOTERN L
i

Demonstrating SIL requirements

= Safety case:

o Documented demonstration that the product complies with the
specified safety requirements (functional + safety integrity)

o Evidence is based on verification and validation

= Random failure integrity (for hardware):
o Quantitative approach: Based on statistics, experiments

o Computation of system failure rate using component fault rate
data from reliability handbooks

= Systematic failure integrity (for software):
o Quantitative approach is not possible (missing reliability data)

o Qualitative approach: Prescribing rigor in the development
1. Well-defined development process (life cycle)
2. Mandatory / recommended techniques and measures
3. Organizational structure: Independence of persons / roles
4. Precise documentation

1. The development process (life cycle)

= Strict rules for proceeding to the next step:
Important to verify the results of development

o High costs of late corrections (esp. during operation)
o The risk caused by remaining failures may be high

= Typically result in a static process (e.g., V-model)
o Well-defined steps
o Requirements and environment known in advance

= Other characteristics:
o Evidences collected for the safety case
o Assessment (independent review)

o Certification and supervision by safety authorities,
based on the development standard

Typical life-cycle model: V-model

Operation,
maintenance

A

Requirement System val. System
analysis [~ T 7 " design [T T * validation
System System test System
specification |~~~ > design [T 77 > verification
Architecture Integration test System
design [7 " design [~ " integration
Well-defined relations \ /
Module Module test Module

between design and

design g design > verification

verification steps:
Planning of the \ /

verification activities

Module
implementation

2. Techniques and measures

" Goal: Preventing the introduction of systematic faults
and controlling the residual faults

= SIL determines the set of techniques to be applied as

o M: Mandatory

o HR: Highly recommended (rationale behind not using it
should be detailed and agreed with the assessor)

o R: Recommended
o ---: No recommendation for or against being used
o NR: Not recommended

"= Combinations of techniques is allowed
o E.g., alternative or equivalent techniques are marked

= Hierarchy of techniques (references to sub-tables)

Example: Testing techniques (EN 50128)

= Software design and implementation:

TECHNIQUE/MEASURE Ref | SWS | SWS [SWS | SWS | SWS
ILO IL1 IL2 IL3 L4

14, Functional/ Black-box Testing D.3 HR HR HR M M
15. Performance Testing D.6 - HR HR HR HR
16. Interface Testing =887 7T HR HR HR HR HR

= Functional / black box testing (D3):

1. Test Case Execution from Cause | B.6 - - - R R
Consequence Diagrams

2. Prototyping/Animation B.49 - - - R R
3. Boundary Value Analysis B.4 R HR HR HR HR
4. Equivalence Classes and |Input| B.19 R HR HR HR HR

Partition Testing

5. Process Simulation B.48 R R R R R

Example: Testing techniques (EN 50128)

= Performance testing (D6):

TECHNIQUE/MEASURE Ref | SWS | SWS | SWS | SWS | SWS
ILO IL1 IL2 IL3 IL4
1. Avalanche/Stress Testing B.3 - R R HR HR
2. Response Timing and Memory B.52 - HR HR HR HR
Constraints
3. Performance Requirements B.46 - HR HR HR HR

Example: Hierarchy of V&V methods (IEC 61508)

_ Dynamic analysis and testing (B2) _

/

f l Functional and black box testing (B3)

: _ . f Performance testing (B6) _
Module testing and integration J-
; . Probabilistic testing

|' ‘\ Interface testing
' .I

_ Data recording and analysis

Functional and black box testing B3)

Software and hardware integration
/ _ Performance testing (B6)

' _Static analysis (B8)

]/'_ Dynamic analysis and testing (B2)
I Software verification / Probabilistic testing

- —

< e ,
KIECG1508 V&V \ Formal proof

™

_ Software complexity metrics

, s Simulation/modelling (B5)

\ Software safety validation ’ Probabilistic testing
We will _ Functional and black box testing (B3)
c Checklists
discuss these —eeCEs

I ,":‘ Decision/truth tables

teC h N |q ues l' { Software complexity metrics

l"-.\ Functional safety assessment j- = .
1 . Failure analysis (B4) _
during the \- y 0

. Common cause failure analysis of diverse software

course '. _ Reliability block diagram

\ Modification _

Example: Hierarchy of V&V methods (IEC 61508)

Equivalence classes and input partition testing

' Test case execution from boundary value analysis

I

Test case execution from error guessing

Dynamic analysis and testing (B2) ‘L
Iy . Testcase execution from error seeding

[| Structure based testing

| | .
\ Performance modelling

| Equivalence classes and input partition testing

’
| | Boundary value analysis

r

Module testing and integration ,-' Functional and black box testing (B3) j Test case execution from cause conseguence diagrams

ra
II' ‘ 11:-\. Process simulation

— | _ Prototyping animation

(51351 508 V&V K
B Avalanchelstress testing

| ra

Performance testing (B6) | Response timings and memaory constraints

_ Performance requirements

L

\ Probabilistic testing

f\
|\ Interface testing

\ Data recording and analysis

\, Sofiware and hardware integration .

| Soflware verification -

\\, Soflware safety validation o

[\ Functional safety assessment -

Y Modification
— O

Example: Hierarchy of V&V m

ethods (IEC 61508)

Maodule testing and integration 5

Functional and black box testing B3)

(Soflware and hardware integration

' Performance testing (B6)

i
|

| i
J

|

Static analysis (B8) J

Checklists

[Control flow analysis

rd

/' Data flow analysis

k
- Boundary value analysis

#

Error guessing

s 1

— |
- [

___.-'"' =
QE‘:E‘IEUB WEN . Soflware verification |

', Dynamic analysis an

. Fagan inspections

LS

\ Sneak circuit analysis

|"-M symbaolic execution

Walk-throughsi/design reviews
d testing (BZ)

_Probabilistic testing

', Formal proof

|I Soflware safety validation -

','-. Functional safety assessment -

\ Modification
————0

'I Soflware complexity metrics

Example: Hierarchy o

f V&V methods (IEC 61508)

Module testing and integration -

| Soflware and hardware integration -

II.. - .
[l Soflware verification -
|

Data flow diagrams

rd

I-" Finite state machines

-
" Formal methods

Performance modelling

e

Soflware safety validation

-

Simulation/muodelling (EIE}J'

}-_ Time Petri nets

\ Prototyping/animation

_ Structure diagrams

_Probabilistic testing

-

VEV

Functional and black box testing (B3)

@51508

_Functional safety assessment

\ Modification
————0

I Software complexity metrics

Checklists

ra

! Decisionitruth tables

Zause consequence diagrams

P
[Eventtree analysis

L~

\ Failure analysis (B4) | Faulttree analysis

11:-_ Failure modes, effects and criticality analysis

_Monte-Carlo simulation

\ Common cause failure analysis of diverse soflware

' Reliability block diagram

3. Precise documentation

= Type of documentation

o Comprehensive (overall lifecycle)
* E.g., Software Verification Plan

o Specific (for a given lifecycle phase)
* E.g., Software Source Code Verification Report

= Document Cross Reference Table
o Determines documentation for a lifecycle phase
o Determines relations among documents

= Traceability of documents is required
o Relationship between documents is specified

1A {

(“based on”, “includes”)
o Terminology, references, abbreviations are consistent

= Merging documents is allowed
o If responsible persons (authors) shall not be independent

Example: Document structure (EN50128)

Software Planning Phase

Software Development Plan

Software Quality Assurance Plan
Software Configuration Management Plan
Software Verification Plan

Software Integration Test Plan
Software/hardware Integration Test Plan
Software Validation Plan

Software Maintenance Plan

30 documents in a
systematic structure

= Specification
= Design
= Verification

System Development Phase

System Requirements Specification
System Safety Requirements Specification
System Architecture Description

System Safety Plan

Software Requirements Spec. Phase

Software Requirements Specification
Software Requirements Test Specification
Software Requirements Verification Report

Software Maintenance Phase

Software Maintenance Records
Software Change Records

Software Assessment Phase

Software Assessment Report

/

Software Validation Phase

Software Architecture & Design Phase

Software Validation Report

/

Software/hardware Integration Phase

Software/hardware Integration Test Report

/

Software Architecture Specification
Software Design Specification

Software Architecture and Design Verification Report

Software Integration Phase

Software Integration Test Report

\

Software Module Design Phase

Software Module Test Specification
Software Module Verification Report

Software Module Design Specification

Software Module Testing Phase

Software Module Test Report

\

Coding Phase

Software Source Code & Supporting Documentation
Software Source Code Verification Report

Example: Document cross reference table (EN50128)

B Creation of a document

@ Use of a document in a given phase

clausel 8 0 10 11 12 | 13 | 14 | 15 16
title) SRS | SA | SDD | SVer |S/HI|SVal| Ass | Q Ma
PHASES DOCUMENTS
*)=in parallel with other phases
W REQUIREMENTS [| * * + + Sw Requirements Specification
[| . . Sw Requirements Test Specification
[| Sw Requirements Verification Report
W DESIGN l * * + Sw Architecture Specification
[] * + Sw Design Specification
[| Sw Arch. and Design Verification
W MODULE DESIGN + + Sw Module Design Specification
[| . . Sw Module Test Specification
[| Sw Module Verification Report
"ODE B . ¢ * . Sw Source Code
[| . . Sw Source Code Verification Report

MODULE TESTING

W INTEGRATION

Sw Module Test Report

Sw Integration Test Report

Data Test Report

BT NTECRATION || L] LB ||| i imegmron Tev Repor
CArDATion 011 L L LB || E Vel Repon

waea

EGYETEM 1782

4. Organization and independence of roles

= Safety management
o Quality assurance
o Safety Organization (responsible persons)

= Competence shall be demonstrated
o Training, experience and qualifications

" Independence of roles:
o DES: Designer (analyst, architect, coder, unit tester)
o VER: Verifier
o VAL: Validator
o ASS: Assessor
o MAN: Project manager
o QUA: Quality assurance personnel

Example: Responsibilities (EN 50128)

SIL 3 or 4:

or.

|
1
1
1
: DES, VER, VAL
|
1
1

1

1
1
-
1 1
1 1
1 ‘ 1
1 1
1 1
1 1
1 1
: DES VER, VAL |!
: :
L e e e e e e e e e e e e e e e e e e e o 1
R
1 1
1
! MGR :
. :
1 1
1 1
1 1
i DES VER, VAL |!
: :
L o o o o o o o o o o e e e e e e 1
T T RS
1 1
1
! MGR :
. :
! 1
! 1
1 1
! 1
i DES VER VAL |!

1
1

DES: Designer

VER: Verifier

VAL: Validator

ASS: Assessor

MAN: Project manager

= Motivation

o What are the quality needs regarding software and what is
offered by the software industry?

o What is the role of software verification and validation
techniques?
= Qverview of the techniques of software V&V

o What are the typical techniques in the development
process?

= Development life cycle models
o What is the role of V&V in the different life cycle models?

"= The role of development standards
o How systematic V&V is realized?

