
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Formal verification:
Basic formalisms

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

2

Recap: The goal of formal verification

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

Basic structures

Kripke structure (KS)

Labeled transition system (LTS)

Kripke transition system (KTS)

Finite state automata (FSA)

3

1. Kripke structure

Basic characteristics:

 Capturing properties of states: labeling by atomic propositions

 Possibly more than one labels per state

 Application: description of behavior or algorithm

Definition:

A Kripke structure 𝐾𝑆 over a set of atomic propositions
𝐴𝑃 = 𝑃, 𝑄, 𝑅, … is a tuple 𝑆, 𝑅, 𝐿 where

 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

 𝐼 ⊆ 𝑆 is the set of initial states,

 𝑅 ⊆ 𝑆 × 𝑆 is the set of transitions and

 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

4

Example: Kripke structure

Traffic light controller

 AP = Green, Yellow, Red, Blinking

 𝑆 = 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5

5

s2 s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

2. Labeled transition system

Basic characteristics:

 Capturing properties of transitions: labeling by actions

 Exactly one action per transition

 Application: modeling of communication and protocols

Definition:

A labeled transition system 𝐿𝑇𝑆 over a set of actions
𝐴𝑐𝑡 = 𝑎, 𝑏, 𝑐, … is a triple 𝑆, 𝐴𝑐𝑡, → where

 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

 𝐼 ⊆ 𝑆 is the set of initial states,

 → ∶ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is the set of transitions

We denote by 𝑠
𝑎
→ 𝑠′ iff 𝑠, 𝑎, 𝑠′ ∈ →

6

Example: Labeled transition system

Vending machine

 Act = coin, coffe, tea

7

T1 T2

coin

coffee tea

coin coin

coffee tea

3. Kripke transition system

Basic characteristics:
 Capturing properties of both states and transitions:

labeling by atomic propositions and actions

 Possibly more than one labels per state,
exactly one action per transition

Definition:
A Kripke transition system 𝐾𝑇𝑆 over a set of atomic propositions
𝐴𝑃 and set of actions 𝐴𝑐𝑡 is a tuple 𝑆, →, 𝐿 where

 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

𝐼 ⊆ 𝑆 is the set of initial states,

 → ∶ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is the set of transitions

 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

8

Example: Kripke transition system

Vending machine with state labeling

 𝐴𝑐𝑡 = coin, coffee, tea

 𝐴𝑃 = Start, Choose, Stop

9

coin

coffee tea

{Start}

{Choose}

{Stop} {Stop}

4. Automata on finite words

 A=(, S, S0, , F) where
o alphabet, S states, S0 initial states

o state transition relation, : S 2S

o F set of accepting states

 Run of an automaton
o State sequence r=(s0, s1, s2, … sn) on the incoming word

w=(a0, a1, a2, … an)

o r is an accepting run if snF

o A word w is accepted by the automaton,
if there is an accepting run over w

 Language L accepted by the automaton A:

 L(A)={ w * | w accepted}

10

Automata on infinite words

 Infinite word: Accepting state at the end of an input
word cannot be checked

 Büchi acceptance criterion:
o On the incoming infinite word w=(a0, a1, a2, …)

there is an r=(s0, s1, s2, …) infinite state sequence

o lim(r)={s | s occurs infinitely often,
 i.e., there is no j, such that k>j:ssk}

o Accepting run: lim(r) F 0

o A word w is accepted by the automaton,
if there is an accepting run over w
(i.e., accepting state occurs infinitely often along w)

 Language L accepted by the automaton A:

 L(A)={ w * | w accepted}
11

Timed Automata:
Finite State Automata with Time

Timed Automata in the UPPAAL model checker

12

Timed Automata: Extension with variables

 Basic formalism: Finite state automaton (FSA)

o Control locations (named) – part of the state of the automaton

o Edges – define state transitions

 Language extension: integer variables

o Variables with restricted domain (e.g. int[0, 10] id)

o Constants (e.g., const int N = 6)

o Integer arithmetic

 Use of variables: on transitions

o Guard: predicate over variables
• The state transition can occur only if the predicate holds

o Action: variable assignment

13

Timed automata: Extension with clock variables

 Goal: modeling time-dependent behavior

o Time passes in given states of the component

o Relative time measurement by resetting and reading timers,
behavior depends on timer value (e.g., timeout)

 Language extension: clock variables

o Measuring time elapse by a constant rate

 Use of clock variables on transitions

o Guard: predicate over clock variables

o Action: resetting clocks to zero

 Use of clock variables on locations

o Location invariant: predicate over clock variables;
being in a location is valid until its invariant holds

14

15

Timed automata in UPPAAL

Location

Guard

Invariant

Action

clock x;

bool activated;

Example: revolving door

16

Role of guards and invariants

Guard

Invariant

clock x;

Upon exiting location open, the value of clock is in interval [4, 8]

4 8 t

Extensions for concurrency

 Goal: modeling networks of automata
o Interaction: Synchronization between automata transitions

o Synchronous communication (handshake, rendezvous)

• Sending and receiving a message occurs at the same time

• Modeling of asynchronous behavior is possible by modeling channels

 Language extension: synchronized actions
o Declaring channels for sending messages

o Sending a message: ! operator
Receiving a message: ? operator

o E.g.: synchronization labels a! and a? for channel a

 Parameterization
o Arrays of channels: E.g. channel a[id] for a variable id

o Useful in case of several participants and interactions

17

a! a?

chan a

Example for clocks and synchronization

Declarations:

 clock t, u;

 chan press;

Switch:

User:

“Receiving a message”
(interaction)

“Sending a message”
(interaction)

18

Further extensions: broadcast channel

 Broadcast channel: one-to-many communication

o Sending a message: unconditional

• No handshake needed

o Receiving a message: synchronized to the sender

• All processes that are ready to receive the message will synchronize

o Restriction: no guard on receiving edge

19

a!

broadcast chan a;

a? a? a?

Further extensions: urgent channel

 Urgent channel: prohibit time delay (waiting for synchronization)

o The synchronization is executed without delay
(other edges might be traversed before, but only instantly)

o Restrictions:
• No guard is allowed on an edge labeled with the name of an urgent channel

• No invariant is allowed on a location that is the source of an edge labeled with
the name of an urgent channel

20 20

a!

invariant

not allowed

guard

not allowed

urgent chan a;

Further extensions: special locations

 Urgent location: prohibit time delay (waiting in location)

o Time is not allowed to progress in the location

o Equivalent model:
• Introduce a clock variable: clock x

• Reset clock on all incoming edges: x:=0

• Add invariant: x<=0

 Committed location: even more restrictive

o A committed location is urgent

o Committed state: at least one committed location is active

o The next transition from a committed state must involve at
least one out-edge of an active committed location

o Simpler case: If only one committed location is active
then its out-edge shall immediately follow its in-edge

U

C

21

22

The UPPAAL model checker

 Development (1999-):
o Uppsala University, Sweden
o Aalborg University, Denmark

 Web page (information, examples, download):
 http://www.uppaal.org/

 Related tools:
o UPPAAL CoVer: Test generation
o UPPAAL TRON: On-line testing
o UPPAAL PORT: Component based modeling
o…

 Commercial version:
http://www.uppaal.com/

23

A
u
to

m
a

to
n
 m

o
d
e

l

24

S
im

u
la

to
r

25 25

V
e

ri
fi
c
a

ti
o

n

