Software Verification and Validation (VIMMDO052)

Formal verification:
Basic formalisms

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

(g gy
MUEGYETEM 1782

Recap: The goal of formal verification

N\
7/

“Informal” “Informal”

| |
|
l design : properties
|
N S '
|
I
: Formal l Formalized
\ model ' properties

~

-_ e - - - = .

OK Diagnostic trace

Basic structures

Kripke structure (KS)
Labeled transition system (LTS)
Kripke transition system (KTS)

Finite state automata (FSA)

1. Kripke structure

Basic characteristics:

= Capturing properties of states: labeling by atomic propositions
= Possibly more than one labels per state

= Application: description of behavior or algorithm

Definition:
A Kripke structure KS over a set of atomic propositions
AP ={P,Q,R, ...} isatuple (S,R,L) where
= S ={s4,Sy,..,5,}is afinite set of states,
[€ S is the set of initial states,

= RC S XS§istheset of transitions and
= [:S — 24P s the labeling of states by atomic propositions

Example: Kripke structure

Traffic light controller
= AP = {Green, Yellow, Red, Blinking}
= 5= {SlJ §2,53,54, 55 }

{Green} {Yellow} {Red} {Red, Yellow}

© »@ ﬁ (st

{Blinking}

2. Labeled transition system

Basic characteristics:

= Capturing properties of transitions: labeling by actions
= Exactly one action per transition

= Application: modeling of communication and protocols

Definition:
A labeled transition system LTS over a set of actions
Act ={a, b,c, ...} is atriple (S, Act,—) where
= S =1{s4,5,,..,S,} is afinite set of states,
I € S is the set of initial states,
= —:S5 X Act X Sis the set of transitions

a
We denote by s = s’ iff (s,a,s’') € -

Example: Labeled transition system

Vending machine

= Act = {coin, coffe, tea}

T1

coffee tea

coffee

3. Kripke transition system

Basic characteristics:

= Capturing properties of both states and transitions:
labeling by atomic propositions and actions

= Possibly more than one labels per state,
exactly one action per transition

Definition:

A Kripke transition system KTS over a set of atomic propositions
AP and set of actions Act is a tuple (S, —, L) where

= S =1{s4,5,,..,S,} is a finite set of states,
I € S is the set of initial states,

= —>: S5 X Act X Sis the set of transitions
= [: S — 24P s the labeling of states by atomic propositions

Example: Kripke transition system

Vending machine with state labeling
= Act = {coin, coffee, tea}
= AP = {Start, Choose, Stop}

4. Automata on finite words

= A=(%, S, S,, p, F) where
o 2 alphabet, S states, S, initial states
o p state transition relation, p: S x X — 2°
o F set of accepting states

= Run of an automaton

o State sequence r=(s,, S;, S,, ..- S,,) on the incoming word
w=(a,, a,, a,, ... a,)

o ris an accepting runifs_ eF

o A word w is accepted by the automaton,
if there is an accepting run over w

= Language L accepted by the automaton A:

L(A)={ we X* | w accepted}

Automata on infinite words

= Infinite word: Accepting state at the end of an input
word cannot be checked

= Bulchi acceptance criterion:

o On the incoming infinite word w=(a,, a,, a,, ...
there is an r=(s,, s;, s,, ...) infinite state sequence

o lim(r)={s | s occurs infinitely often,
i.e., there is no j, such that Vk>j:s#s,}

o Accepting run: lim(r) " F#0

o A word w is accepted by the automaton,
if there is an accepting run over w
(i.e., accepting state occurs infinitely often along w)

= Language L accepted by the automaton A:
L(A)={ we X* | w accepted}

T e e 11
TEM 1782

Timed Automata:

Finite State Automata with Time

Timed Automata in the UPPAAL model checker

Timed Automata: Extension with variables

= Basic formalism: Finite state automaton (FSA)
o Control locations (hamed) — part of the state of the automaton
o Edges — define state transitions

= Language extension: integer variables
o Variables with restricted domain (e.g. int[0, 10] id)
o Constants (e.g., const int N = 6)
o Integer arithmetic

= Use of variables: on transitions

o Guard: predicate over variables
* The state transition can occur only if the predicate holds

o Action: variable assignment

Timed automata: Extension with clock variables

" Goal: modeling time-dependent behavior
o Time passes in given states of the component

o Relative time measurement by resetting and reading timers,
behavior depends on timer value (e.g., timeout)

= Language extension: clock variables

o Measuring time elapse by a constant rate

= Use of clock variables on transitions
o Guard: predicate over clock variables
o Action: resetting clocks to zero

= Use of clock variables on locations

o Location invariant: predicate over clock variables;
being in a location is valid until its invariant holds

Timed automata in UPPAAL

Example: revolving door
clock x;

[| ocation }\ bool activated:
idle

activated = frue

O

=0,
% activated=false

[Action

(=4

o —
i —
Eat X

Yl
5

clasing O<
K<=h

O-

opening
K<=h

& Edit Location

Marme: Iwait

Inwariant:

[Inikial
[~ Urgent
[T Committed

(] I Cancel |

&S Edit Edge

x|

Seleck;

Guard: [.==g

Swnc:

Update: [.=n

Cancel

Role of guards and invariants

clock x;
O activated = frue
% é) wait
K

idle

closed apening
x<=5 QQ e

x==6 Ff; [Guard }

=0,
activated=false

_—] Invariant }
closing x==4 x=0 é open
O- <=8

.
X<=h X<=o

Upon exiting location open, the value of clock is in interval [4, 8]

4 8 t

Extensions for concurrency

= Goal: modeling networks of automata
o Interaction: Synchronization between automata transitions

o Synchronous communication (handshake, rendezvous)
* Sending and receiving a message occurs at the same time
* Modeling of asynchronous behavior is possible by modeling channels

= Language extension: synchronized actions

o Declaring channels for sending messages

()

o Sending a message: | operator
Receiving a message: ? operator

o E.g.: synchronization labels a! and a? for channel a

" Parameterization chan a

o Arrays of channels: E.g. channel a[id] for a variable id

o Useful in case of several participants and interactions

Example for clocks and synchronization

Declarations: “Receiving a message”
clock t, u: (interaction)
14 4
chan press;
Switch:
Off
@
press?
User: oress! =0 LightOn “Sending a message”
v y (interaction)
Think - .
Press U=
press! u=0 ToBright press BrightOn
}\.._.z"' .
u=3

press

Further extensions: broadcast channel

= Broadcast channel: one-to-many communication

o Sending a message: unconditional
* No handshake needed

o Receiving a message: synchronized to the sender
* All processes that are ready to receive the message will synchronize

o Restriction: no guard on receiving edge

broadcast chan a;

| L
O

Further extensions: urgent channel

= Urgent channel: prohibit time delay (waiting for synchronization)

o The synchronization is executed without delay
(other edges might be traversed before, but only instantly)

o Restrictions:
* No guard is allowed on an edge labeled with the name of an urgent channel

* Noinvariant is allowed on a location that is the source of an edge labeled with
the name of an urgent channel

l urgent chan a;

Q\ invariant

not allowed
|

a guard

— not allowed

v

Further extensions: special locations

= Urgent location: prohibit time delay (waiting in location)

o Time is not allowed to progress in the location l
o Equivalent model: @
* Introduce a clock variable: clock x l
* Reset clock on all incoming edges: x:=0

e Add invariant: x<=0

= Committed location: even more restrictive

o A committed location is urgent l
o Committed state: at least one committed location is active @
o The next transition from a committed state must involve at

least one out-edge of an active committed location l

o Simpler case: If only one committed location is active
then its out-edge shall immediately follow its in-edge

The UPPAAL model checker

= Development (1999-):
o Uppsala University, Sweden
o Aalborg University, Denmark
= Web page (information, examples, download):
http://www.uppaal.org/

= Related tools:
o UPPAAL CoVer: Test generation
o UPPAAL TRON: On-line testing
o UPPAAL PORT: Component based modeling
O ...

= Commercial version:
http://www.uppaal.com/

& E:/Tools/Uppaal/demo/2doors.xml - UPPAAL & |D| 5]

File Edit View Tools Options Help

0 |DaM A& R@so
© Editor | simulator | Verifier |
O Drag out |: Mame; IDoor Parameters: Ibool &activated, urgent chan &pushed, urgent chan &closed1, urgent chan &closed2
E . | Project
- # Declarations
C S B pushed?
) R ;’SE’t’ o closed1! activated = true
=4 System declarations / ; closed|
S O @ o=
E idle wait
(@) closed2?
= o =
I closed1!
@ closed CS opening
% {:5 e ¥ <::,3
X==0 X ___.I'.
%=0, x=0
activated=false
closing h_ D open
X<=6 ~ & ¥<=8
X=0

£ E:/Tools/Uppaal/demo/2doors.xml - UPPAAL
File Edit View Tools Options Help

|IBalaa s R@-»o

Editol I verifier |

4 4
Drag out I, Drag out N &
- activated] = 1 Door1 Door2
Enabled Transitions sctivated? = 0
R e pushed1? pushed2?

User2 Doorl.x >= closzd1! activated1 = true closed2! activated2 = true :
closed2: Door2 -~ Doorl Door2.x >=0 M doszd1! M dosed?!
Userl.w=0 iclle wait idle vait

Simulator

Userz,w >=0 T o "
Doorl.x = Door2, x =5 x=0 =5 x=0
Door2.x = User2.w
X cosed1! dosed2!
B dossd T opening 4 dosad G 5 opening
__I &7 x<=5 (x<=R & ye=5 (7/ w<=R
o
Mext | Reset | y==Ff ==0 X==6 ¥==0
x=0, x=0 x=0, =0
Simulation Trace activated=falss activatec=falss
(idle, idle, idle, idle)

dosing dosing —
Userl x<=6 x<=h
(idle, idle, -, idle)
pushed1: Userl --> Doorl User1 User2
{wait, idle, idle, idle) idlle idle

pushed1! pushed2!

lacti vated! lact vatec2
we0 w=0

-x

Door1 Door2 User1 User2

Trace File: |
0

reyv [dext Repla
i X pushed1

Open Save Random

idle

II_-!!I F:/FTapps/Uppaal/demo/2doors.xml - UPPAAL - | Ellﬂ

File Edit Wiew Tools Options Help

[ba@maaage-:ms

Eu:litu:url Simulatar Yerifier I

— Cetyie
CU Check
o &[] not (Doorl.open and DoorE. open)
. s— Insert
A[] (Doorl.opening imply Userl.w<=31) and (Doord.opehing inply UserZ.w<=31) .
) : E<> Doorl.open o Remaoye
q) E<> Doori.open . Camments
> -

Quety
Al not (Doort.open and Door2. open)

Commenkt

Mutex: The two doors are never open atthe same time.

.]

Skatus

Established direct connection to local server,

(Academic) UPPAAL version 40,7 (rey. 41400, November 2008 -- server,
Disconnecked,

Established direct connection to local server,

(Academic) UPPAAL version 40,7 (rey. 41400, November 2008 -- server,
A[] not {Doorl .open and Door 2, open)

Property is satisfied,

&[] (Door1 opening imply Userl,w<=311 and (Doorz, opening imply Users w<=31
Property is satisfied,

E <> Doors,open

Property is satisfied,

a[] not deadlock.

Property is satisfied,

ook, waik --= DoorZ, apen

Property is satisfied,

Dioorl waik --= Doorl . open

Property is satisfied,

