Formal verification: Basic formalisms

> Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems



Budapest University of Technology and Economics Department of Measurement and Information Systems

#### Recap: The goal of formal verification





### **Basic structures**

Kripke structure (KS) Labeled transition system (LTS) Kripke transition system (KTS) Finite state automata (FSA)

# 1. Kripke structure

#### Basic characteristics:

- Capturing properties of states: labeling by atomic propositions
- Possibly more than one labels per state
- Application: description of behavior or algorithm

#### Definition:

A Kripke structure KS over a set of atomic propositions  $AP = \{P, Q, R, ...\}$  is a tuple (S, R, L) where

- S = {s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>n</sub>} is a finite set of states,
  I ⊆ S is the set of initial states,
- $R \subseteq S \times S$  is the set of transitions and
- $L: S \rightarrow 2^{AP}$  is the labeling of states by atomic propositions

### Example: Kripke structure

#### Traffic light controller

- AP = {Green, Yellow, Red, Blinking}
- $S = \{s_1, s_2, s_3, s_4, s_5\}$





# 2. Labeled transition system

#### Basic characteristics:

- Capturing properties of transitions: labeling by actions
- Exactly one action per transition
- Application: modeling of communication and protocols

#### Definition:

A labeled transition system *LTS* over a set of actions  $Act = \{a, b, c, ...\}$  is a triple  $(S, Act, \rightarrow)$  where

- $S = \{s_1, s_2, ..., s_n\}$  is a finite set of states,  $I \subseteq S$  is the set of initial states,
- $\rightarrow : S \times Act \times S$  is the set of transitions

We denote by  $s \xrightarrow{a} s'$  iff  $(s, a, s') \in \rightarrow$ 

#### Example: Labeled transition system

Vending machine

Act = {coin, coffe, tea}



# 3. Kripke transition system

#### Basic characteristics:

- Capturing properties of both states and transitions: labeling by atomic propositions and actions
- Possibly more than one labels per state, exactly one action per transition

#### Definition:

A Kripke transition system KTS over a set of atomic propositions AP and set of actions Act is a tuple  $(S, \rightarrow, L)$  where

- $S = \{s_1, s_2, ..., s_n\}$  is a finite set of states,  $I \subseteq S$  is the set of initial states,
- $\rightarrow : S \times Act \times S$  is the set of transitions
- $L: S \rightarrow 2^{AP}$  is the labeling of states by atomic propositions

#### Example: Kripke transition system

Vending machine with state labeling

- Act = {coin, coffee, tea}
- AP = {Start, Choose, Stop}



#### 4. Automata on finite words

- A=( $\Sigma$ , S, S<sub>0</sub>,  $\rho$ , F) where
  - $\circ \Sigma$  alphabet, S states, S<sub>0</sub> initial states
  - $\circ$  ρ state transition relation, ρ: S × Σ → 2<sup>s</sup>
  - F set of accepting states
- Run of an automaton
  - State sequence r=(s<sub>0</sub>, s<sub>1</sub>, s<sub>2</sub>, ... s<sub>n</sub>) on the incoming word w=(a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, ... a<sub>n</sub>)
  - $\circ$  **r** is an accepting run if **s**<sub>n</sub>∈**F**
  - A word w is accepted by the automaton, if there is an accepting run over w
- Language L accepted by the automaton A:
  L(A)={ w∈ Σ\* | w accepted}

#### Automata on infinite words

- Infinite word: Accepting state at the end of an input word cannot be checked
- Büchi acceptance criterion:
  - On the incoming infinite word w=(a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, ...) there is an r=(s<sub>0</sub>, s<sub>1</sub>, s<sub>2</sub>, ...) infinite state sequence
  - o lim(r)={s | s occurs infinitely often,
    - i.e., there is no j, such that  $\forall k > j: s \neq s_k$
  - Accepting run:  $\lim(r) \cap F \neq 0$
  - A word w is accepted by the automaton, if there is an accepting run over w (i.e., accepting state occurs infinitely often along w)
- Language L accepted by the automaton A:

 $L(A) = \{ w \in \Sigma^* | w \text{ accepted} \}$ 

# Timed Automata: Finite State Automata with Time

Timed Automata in the UPPAAL model checker

# Timed Automata: Extension with variables

- Basic formalism: Finite state automaton (FSA)
  - Control locations (named) part of the state of the automaton
  - Edges define state transitions
- Language extension: integer variables
  - Variables with restricted domain (e.g. int[0, 10] id)
  - Constants (e.g., const int N = 6)
  - Integer arithmetic
- Use of variables: on transitions
  - Guard: predicate over variables
    - The state transition can occur only if the predicate holds
  - Action: variable assignment

# Timed automata: Extension with clock variables

- Goal: modeling time-dependent behavior
  - Time passes in given states of the component
  - Relative time measurement by resetting and reading timers, behavior depends on timer value (e.g., timeout)
- Language extension: clock variables
  - Measuring time elapse by a constant rate
- Use of clock variables on transitions
  - Guard: predicate over clock variables
  - Action: resetting clocks to zero
- Use of clock variables on locations

Location invariant: predicate over clock variables;
 being in a location is valid until its invariant holds

#### Timed automata in UPPAAL



М Ű Е G Ү Е Т Е М 178

#### Role of guards and invariants



Upon exiting location open, the value of clock is in interval [4, 8]



### Extensions for concurrency

- Goal: modeling networks of automata
  - Interaction: Synchronization between automata transitions
  - Synchronous communication (handshake, rendezvous)
    - Sending and receiving a message occurs at the same time
    - Modeling of asynchronous behavior is possible by modeling channels
- Language extension: synchronized actions
  - Declaring channels for sending messages
  - Sending a message: ! operator
    Receiving a message: ? operator
  - E.g.: synchronization labels a! and a? for channel a
- Parameterization
  - Arrays of channels: E.g. channel a[id] for a variable id
  - Useful in case of several participants and interactions



chan a

#### Example for clocks and synchronization



EGYETEM 178

#### Further extensions: broadcast channel

- Broadcast channel: one-to-many communication
  - Sending a message: unconditional
    - No handshake needed
  - Receiving a message: synchronized to the sender
    - All processes that are ready to receive the message will synchronize
  - Restriction: no guard on receiving edge

broadcast chan a;



#### Further extensions: urgent channel

- Urgent channel: prohibit time delay (waiting for synchronization)
  - The synchronization is executed without delay (other edges might be traversed before, but only instantly)
  - Restrictions:
    - No guard is allowed on an edge labeled with the name of an urgent channel
    - No invariant is allowed on a location that is the source of an edge labeled with the name of an urgent channel



### Further extensions: special locations

U

С

- Urgent location: prohibit time delay (waiting in location)
  - Time is not allowed to progress in the location
  - Equivalent model:
    - Introduce a clock variable: clock x
    - Reset clock on all incoming edges: x:=0
    - Add invariant: x<=0
- Committed location: even more restrictive
  - A committed location is urgent
  - Committed state: at least one committed location is active
  - The next transition from a committed state must involve at least one out-edge of an active committed location
  - Simpler case: If only one committed location is active then its out-edge shall immediately follow its in-edge

# The UPPAAL model checker

- Development (1999-):
  - Uppsala University, Sweden
  - Aalborg University, Denmark
- Web page (information, examples, download): http://www.uppaal.org/
- Related tools:
  - UPPAAL CoVer: Test generation
  - UPPAAL TRON: On-line testing
  - UPPAAL PORT: Component based modeling

0...

 Commercial version: http://www.uppaal.com/



![](_page_23_Figure_0.jpeg)

Simulator

- O ×

|         | 😳 F:/FTapps/Uppaal/demo/2doors.xml - UPPAAL                                                                                                                |          |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|         | <u>File Edit View Tools Options Help</u>                                                                                                                   |          |
| C       | $\square \square $ |          |
|         | Editor Simulator Verifier                                                                                                                                  |          |
|         | Overview                                                                                                                                                   |          |
| at      |                                                                                                                                                            |          |
| ö       | A[] not (Doorl.open and Door2.open)                                                                                                                        |          |
| ij      | A[] (Doorl.opening imply Userl.w<=31) and (Door2.opening imply User2.w<=31)                                                                                | Insert   |
|         | E<> Doorl.open                                                                                                                                             | Remove   |
| Φ       | E<> Door2.open                                                                                                                                             | Comments |
| >       |                                                                                                                                                            |          |
| -       | All not (Deart anon and Dear2 anon)                                                                                                                        |          |
|         | All not (Doorf.open and Doorz.open)                                                                                                                        |          |
|         |                                                                                                                                                            |          |
|         |                                                                                                                                                            |          |
|         | Mutex: The two doors are never open at the same time.                                                                                                      |          |
|         |                                                                                                                                                            |          |
|         |                                                                                                                                                            |          |
|         | Status                                                                                                                                                     |          |
|         | Established direct connection to local server.                                                                                                             |          |
|         | (Academic) UPPAAL version 4.0.7 (rev. 4140), November 2008 server.                                                                                         |          |
|         | Disconnected.<br>Established direct connection to local server.                                                                                            |          |
|         | (Academic) UPPAAL version 4.0.7 (rev. 4140). November 2008 server.                                                                                         |          |
|         | A[] not (Door1.open and Door2.open)                                                                                                                        |          |
|         | Property is satisfied.                                                                                                                                     |          |
|         | A[] (Door1.opening imply User1.w<=31) and (Door2.opening imply User2.w<=31)<br>Descentusis satisfied                                                       |          |
|         | F<> Door2.open                                                                                                                                             |          |
|         | Property is satisfied.                                                                                                                                     |          |
|         | A[] not deadlock                                                                                                                                           |          |
|         | Property is satisfied.                                                                                                                                     |          |
|         | Door2.wait> Door2.open                                                                                                                                     |          |
|         | Property is satisfied.                                                                                                                                     |          |
|         | Door1.wait> Door1.open                                                                                                                                     |          |
| ▲Å∕━━►Å | ri uper cy is sousineu.                                                                                                                                    |          |
|         |                                                                                                                                                            |          |