Software Verification and Validation (VIMMDO052)

Formalizing and checking properties:
Temporal logic LTL

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

‘ﬂ..||..ﬂ‘
MUEGYETEM 1782

Recap: Goals of formal verification

\

N\

“Informal” : “Informal” :
design : properties |
' ' ' ‘

' |

Formal | Formalized !
model \ properties ,'

OK Diagnostic trace

Overview

= Temporal operators of LTL

" Formal syntax and semantics of LTL
o Extending LTL to LTS

= Examples

= Verification of LTL properties
o The model checking problem

o LTL model checking: Automata based approach

Linear Temporal Logic (LTL)

Temporal operators
Syntax and semantics
Examples

lllustration of linear and branching timelines

{Green} {Yellow} <{Red} {Red, Yellow}
sl ™ S2 ™ S3

N

{Blinking}
‘ Branching
{Red Y& Winki \ inki
Linear @
e ™\ Logical time
on branching

{Green} {Yellow} {Red} {Red, Yellow}
@4,@4,@_, timelines (all
possible runs)

Logical time on a time line (a concrete run))

.

Linear temporal logic — Formulas

Construction of formulas: p, g, 1, ...
= Atomic propositions (elements of AP): P, Q, ...

= Boolean operators: A, v, =, =
A: conjunction, v: disjunction, —: negation , =: implication
= Temporal operators: X, F, G, U informally:

o X p: “neXt p” o
p holds in the next state xXp O—Q@—) —O—(O—

o F p: “Future p”

p holds eventually Fr O—(O—) ».P o —>
on the path
o G p: “Globally p” p P p p P
p holds in all states P @—O0—0—0—0—
on the path

o pUqg:“pUntilg”

p p p P Q
p holds at least until g, PUQ O—0O—0—0C—0—
which holds on the path

LTL examples

" p=Fq
If p holds (in the initial state), then eventually g holds.
* Example: Start = F End
" G(p=Fq)
For all states, if p holds, then eventually g holds.
* E.g.: G (Request = F Reply); for all requests, a reply eventually arrives

" pU(qvr)
Starting from the initial state, p holds until g or r eventually holds.

 Example: Requested U (Accept v Refuse)
A continuous request either gets accepted or refused

= GFp
Globally along the path (in any state), eventually p holds

* There is no state after which p does not hold eventually
* Example: GF Start; the Start state is reached from all states

" FGp
Eventually, p continuously holds

* Example: FG Normal
(After an initial transient) the system keeps operating normally

LTL syntax

Syntax: What are the well-formed formulas (wff)?

The set of well-formed formulas in LTL are given by
three syntax rules:

Let P € AP and p and g be wffs. Then
" L1: Pis a wff

" L2: p A g and —p are wffs

" L3: Xgand p U g are wffs

Precedence rules:
X, U>—>A>Vv>=>=

Derived operators

= true holds for all states
false holds in no state

" pv g means —(—p A —Q)
D => g means —p Vv q
D=Q Means p=gAQqQ=0p

" Fp means true U p Informally:
Gp means —,F(_,p) It is not true that p does

not occur until g

= “Before” operator:

p WB g=—((—p) U Qq) (weak before)
pBg=—((—p)Uqg) AFg (strong before)

Included: g shall occur

LTL semantics — Notation

Rationale of having formal semantics:

* When does a given formula hold for a given model?
o The semantics of LTL defines when a wff holds over a path

= Allows deciding “tricky” questions:
o Does F p hold if p holds in the first state of a path?
o Does p U g hold if g holds in the first state of a path (without p)?

Notation:
= M=(S,R, L) Kripke structure
= =Sy Sy, Sy,---) @ path of M
where s €1 and V i20: (s, s,,,)€R

T'= (S, Si,1, Siyoy-.) the suffix of m from index i

= M,nt |=p denotes:
in Kripke structure M, along path «t, property p holds

Defined recursively w.r.t. syntax rules:

= L1: M,mt |= P iff PeL(s,)
= L2: M, |=pAqiff M, |=pand M,rt |= g
M,t |=—q iff not M, |=q.
s L3 M, |=Xpiff et |=p
M,t [=(p U q) iff
™ |= g for some j>0 and
n¢ | = p for all 0<k<;j

Formalizing requirements: Example

Consider an air conditioner with the following
operating modes:

AP={Off, On, Error, MildCooling, StrongCooling,
Heating, Ventilating}

= At a time, more than one modes may be active
o E.g. {On, Ventilating}

= When formalizing requirements, we may not yet
know the state space (all potential behaviors)

o We use only the labels belonging to operating modes

Formalizing requirements: Example

Air conditioner with the following operating modes:
AP = {Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}

= The air conditioner can (and will) be turned on
F On

= At some point, the air conditioner always breaks down
GF Error

= |f the air conditioner breaks down, it eventually gets repaired
G (Error = F —Error)

= A broken air conditioner does not heat:
G —(Error A Heating)

= After finishing the heating, the air conditioner must ventilate:
G ((Heating A X —Heating) = X Ventilating)

= After ventilation the air conditioner must not cool strongly until it
performs some mild cooling:

G ((Ventilating A X —Ventilating) =
X(—StrongCooling U MildCooling))

Extending LTL for LTS

LTL: Transitions are labeled by actions

A path in LTS is an alternating sequence
of states and actions:

" 1T =(Sy Ay, Sy, Ay, Sy, Az, o)
Extending the syntax:
= L1*:If acAct then (a) is a wff.

The corresponding case in semantics:

= L1*: M,nt |= (a) iff. a,=a
where a, is the first action in m.

Requirements for action sequences
o Example: G ((coin) = X ((coffee) v (tee)))

Verification of LTL properties

The model checking problem
LTL model checking: The automata-based approach

Model based verification by model checking

4 ™
e Basic mathematical formalisms Temporal logic:
(KS, LTS, KTS) LTL
e By default, checked on all paths

N y
Formal Formalized
model requirements

Model checker:
Mm [=p

OK Diagnostic trace

Automata based approach

= A=(2, S, S,, p, F) automaton on finite words

o Here: X is formed as letters from the 24° alphabet
 State labels L(s) are considered as letters
* E.g., {Red, Yellow} is a letter from the alphabet above

o The path n=(s,, s, S, ... 5,,) identifies a word as follows:
(L(sp), L(s4), L(s;), ... L(s,))
= Two automata are needed:

o Model automaton: Based on a model M=(S,R,L)
an automaton A, is constructed that accepts and only
accepts words that correspond to the paths of M

o Property automaton: Based on the expression p
an automaton A is constructed that accepts and only
accepts words that correspond to paths on which p is true

Model checking using the automata

* Model checking question: L(A) < L(A)) ?

o l.e., is the language of the model automaton included L(A,)
in the language of the property automaton?
o If yes, them M,nt |=p for all paths of M
= Verifying L(A) < L(A,) by alternative ways
o Is the intersection of the following languages empty: L(AM)mL(Ap)C
where L(Ap)C is the complement language of L(A)
o Is the language that is accepted by the Ay, xA ¢ product automaton empty,
where A ©is the complement of A
* In case of finite words (finite behavior): The language is empty if there is
no reachable accepting state in Ay, x A *
* In case of infinite words (cyclic behavior): Blichi acceptance criteria can
be used (— no cyclic behavior with accepting states)

* A, construction (in fully defined and deterministic case):
swapping accepting states with non-accepting states and vice versa

Overview of automata based model checking

M=(S,R,L) model p LTL expression
Ay automaton Ap, AIOC automata

~.

AwxA,¢ product automaton

l

Y Is the accepted W » Diagnostic
language empty? J trace

p is true

(In the following: Basic ideas will be discussed, not a complete algorithm.)

Example: Checking FP A G Q

M model {Q} {P.Q} Q)
%@l s/(z/h ~(3)

|
|
|
|
automaton
ALy By
S e
P.q} :
|
Synchronous |
product of i
automata
Ay and A°
Q P.Q Q
~ L afle e
P.Q} | %Q}
2)
().\ (P.Q}

{Q. {P.Q}
' Py
f* Assume; AID
automaton
W {P}\\/é\f/{}k belonging to
\J FPAGQ
/ . {P}. {Q}, {P.Q}
\{ g m{o} {P.Q}
\ Ap c
0. {F} {1 P automaton
\Q)
k/ &, (P} {Q}, {P.Q}
12)

There is no accepting
state: No counter-
example for FP A G Q

J

Overview of automata based model checking

’_____\

M=(S,R,L) model

]

p LTL expression

l

Ap, AIOC automaton

e

AnxA,¢ automaton

l

Y Is the accepted » Diagnostic
language empty? J trace

Ay automaton

aa e s s s

p is true

Constructing A,, on the basis of M

= |Labels are moved to outgoing transitions

= |n case of finite behavior (finite words):
: : @ P @
o Accepting state s;is added D) /@h ~(3)
o Transitions are added from the end states K
(without outgoing transition) to the
. P.Q
accepting state s; o 7@; e {QL@
1\—/\
{P.Q}

= Formally the automaton:
AM=(2AP) SU{Sf}I {So}) p; {Sf})

where the transitions relation is the following:

p={ (s,L(s),t) | (s,t)eR } L
{(s,L(s),s;) | not, such that (s,t)eR }

Overview of automata based model checking

’_____\

M=(S,R,L) model p LTL expression

——

Ay automaton Ap, AIOC automaton

\ \7/___,

AnxA,¢ automaton

l

Y Is the accepted » Diagnostic
language empty? J trace

D —

p is true

Constructing A on the basis of p: The basic idea

= A, automaton: Shall represent those paths on which p is true

= Basicidea: Decompose the expression similarly to the tableau
method and this way identify the states and transitions of A

o First decomposition: Identifies the initial state(s) of A,

* Labels of the state: Based on the atomic propositions (i.e., without temporal
operators) resulting from the decomposition

e OQutgoing transitions to next states: Identified by the (sub)expressions with
temporal operators, that have to be true from the next state

o New decomposition for each formula belonging to a next state

= |nitial step: Construct the negated normal form of the expression

o For Boolean operators: de Morgan laws

o For temporal operators:
—(X'p) =X (—p)
—(p U q) can be handled by defining the R ,release” operator:
—(p U q) = (=p) R (—=0q), fromwhichpRg=qA(pVvX(pRQq))

Constructing A on the basis of p: Data structure

= Data structure (a record) to represent the decomposition:
o New: list of expressions to be decomposed
o Local: atomic propositions related to the current state
o Next: expression that has to be true from the next state

List of formula may result
from the decomposition

New: N, p

Local:

Next:

Constructing A, on the basis of p: Decomposition rules

= Decomposition rules for A and v:

New: N, PAQ N/ P, g
Local:
Next:

v

New: N, pvq N, p
Local:
Next:

v

Constructing A, on the basis of p: Decomposition rules

= Decomposition rules for X and U:

New:
Local:
Next:

New:
Local:
Next:

N, Xp

N,pUq

basedontherulepUqg=qv (p A X(pUAQ))

N, p

pUQq

Constructing A, on the basis of p: Decomposition rules

= Decomposition rule for R:

New: N,pRg N,q,p

Local: >
Next:

N, g

PRQ

basedontherulepRg=qgA (pv X(p R Q))

Constructing A on the basis of p (6)

= States: A state of the Ap automaton is identified from a node of the
decomposition if:

o There are only atomic propositions in the New field of the node;
these are copied to the Local field and become state labels,

o and there is no state in Ap that was identified based on a node with the
same Local and Next fields (otherwise the same state is identified again)
= Transitions: If a state s of the A, automaton is identified then:

o A new decomposition is started from the expression that is in the Next field
of the node (copying it to the New field of a new node),
since the Next field identifies property to be satisfied from the next state

o Transitions of Ap are drawn from the state s to the states that result from the
new decomposition

= Summary:

o A, states are identified when the decomposition results in atomic
propositions (there is no further operator to be decomposed)

O AIO transitions from a state s are drawn to the states that result from the
decomposition of the formula in the Next field of the node belonging to s

Example: P U (Q v R)

N C\
@ O/ Q 1)
p
+7 i
QvR 7 8
v /
#| /
PU@QVR) | ~ e PU@VR) | R
.7 — e - S
A
\ \
\\ - @ \\
N \
! \
PU(QvR) \ c @

@, PU(QVR)

O €

i _ / k

BT o

Constructing A on the basis of p (7)

= Further elements of Ap:
o Initial state(s):

 State(s) resulting from the first decomposition
o Accepting states (in finite case):

* When the Next field is empty (no formula refers to the next state)
o Labeling of a state: All subsets of AP that are compatible

with the atomic propositions found in the Local field of the
node belonging to the state

* Each atomic proposition is included that is non-negated in Local
* There is no atomic proposition that is negated in Local

Since each behavior is to be included in Apthat is allowed
by the propositions in the Local field

Example: P U (Q v R) with AP={P,Q,R}

QvR

PU@VR) | -

EE bl
i

PU@VR) |

PU(QVR)

{P}{P.Q} \%>
{P.R}{P.Q.R}

{Q}{Q,P}
{Q.R}{P.Q,R}

{R} {R,P}
{RQ}{P.QR}

Complexity of PLTL model checking

= Worst-case time complexity of model checking the expression p on
model M=(S,R,L):

O(|S|?x 2Irl), where

o |S| is the number of states
o |p| is the number of operators in the LTL formula

o |S|?is the number of transitions in the model automaton
(maximum number of transitions; typically only linear with S)

o 2IPlis the number of transitions in the property automaton
(maximum number of sub-expressions to be
decomposed and resulting in new transitions)

o |S|?x2Irl results from the state space of the product automaton
(in which accepting states or cycles shall be found)

= The exponential complexity seems frightening, but
o The LTL expressions are typically short (a few operators)

o Complexity results from the size of the model automaton

The model checker SPIN

P E Tempora O] 1 : | = ~- - |0 X
Formula: |<>[Jonelsader Handling paths in the model l
Operatorz:] |{:>| L | - |3nc| u:ur|nu:u|
Froperty holdz for: wecutions [desired behavior] © Mo Executions [eror behavior)

k- \
“| Some u:uthel[]prDEerthlas: Notation for LTL operators:
I[] noLeader .
s sloctad F s denoted by <>
[l [noLeader U oneleader] G is denoted by []
J
&l
Sumbal Definitions:
j fdefine elected [hr_leaderz = 0] Ve ™\
Hdefine noLeader [nr_leaders == 0] Labels (atomic
fdefine oneleader [nr_leaders ==1) ..
| propositions) are
N defined using the
There is no X operator: variables of the model
. N P m—
It is not supported by the states space
reduction that is applied in SPIN

= Temporal operators of LTL

" Formal syntax and semantics of LTL
o Extending LTL to LTS

= Examples

= Verification of LTL properties
o The model checking problem

o LTL model checking: Automata based approach

