Formalizing and checking properties: Temporal logic LTL

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Recap: Goals of formal verification

Overview

- Temporal operators of LTL
- Formal syntax and semantics of LTL

 Extending LTL to LTS
- Examples
- Verification of LTL properties
 - The model checking problem
 - LTL model checking: Automata based approach

Linear Temporal Logic (LTL)

Temporal operators Syntax and semantics Examples

Illustration of linear and branching timelines

Linear temporal logic – Formulas

Construction of formulas: p, q, r, ...

- Atomic propositions (elements of AP): P, Q, ...
- Boolean operators: \land , \lor , \neg , \Rightarrow

 \land : conjunction, \lor : disjunction, \neg : negation , \Rightarrow : implication

- Temporal operators: X, F, G, U informally:
 - X p: "neXt p"
 p holds in the next state
 - F p: "Future p"
 p holds eventually
 on the path
 - G p: "Globally p"
 p holds in all states on the path
 - p U q: "p Until q"
 p holds at least until q, which holds on the path

LTL examples

■ p⇒Fq

If p holds (in the initial state), then eventually q holds.

- Example: Start \Rightarrow **F** End
- $G(p \Rightarrow Fq)$

For all states, if p holds, then eventually q holds.

• E.g. : G (Request ⇒ F Reply); for all requests, a reply eventually arrives

■ p U (q ∨ r)

Starting from the initial state, p holds until q or r eventually holds.

 Example: Requested U (Accept
 V Refuse)
 A continuous request either gets accepted or refused

• **GF** p

Globally along the path (in any state), eventually p holds

- There is no state after which p does not hold eventually
- Example: **GF** Start; the Start state is reached from all states

• **FG** p

Eventually, p continuously holds

 Example: FG Normal (After an initial transient) the system keeps operating normally

LTL syntax

- Syntax: What are the well-formed formulas (wff)? The set of well-formed formulas in LTL are given by three syntax rules:
- Let $P \in AP$ and p and q be wffs. Then
- L1: P is a wff
- L2: $p \land q$ and $\neg p$ are wffs
- L3: X q and p U q are wffs

Precedence rules:

X, U > \neg > \land > \lor > \Rightarrow > \equiv

Derived operators

- true holds for all states false holds in no state
- $p \lor q$ means $\neg(\neg p \land \neg q)$ $p \Rightarrow q$ means $\neg p \lor q$ $p \equiv q$ means $p \Rightarrow q \land q \Rightarrow p$
- Fp means true U p **G**p means $\neg F(\neg p)$
- "Before" operator: p WB q = -((-p) U q) $\mathbf{p} \mathbf{B} \mathbf{q} = \neg((\neg \mathbf{p}) \mathbf{U} \mathbf{q}) \wedge \mathbf{F} \mathbf{q}$ (strong before)

Informally: It is not true that p does not occur until q

(weak before)

Included: q shall occur

LTL semantics – Notation

Rationale of having formal semantics:

- When does a given formula hold for a given model?
 - The semantics of LTL defines when a wff holds over a path
- Allows deciding "tricky" questions:
 - Does **F p** hold if **p** holds in the first state of a path?
 - Does **p** U **q** hold if **q** holds in the first state of a path (without **p**)?

Notation:

- M = (S, R, L) Kripke structure
- $\pi = (s_0, s_1, s_2,...)$ a path of M where $s_0 \in I$ and $\forall i \ge 0 : (s_i, s_{i+1}) \in R$

 π^{i} = (s_i, s_{i+1}, s_{i+2},...) the suffix of π from index i

 M,π | = p denotes: in Kripke structure M, along path π, property p holds

LTL semantics

Defined recursively w.r.t. syntax rules:

- L1: M, π |= P iff P \in L(s₀)
- L2: M,π |= p∧q iff M,π |= p and M,π |= q M,π |= ¬q iff not M,π |= q.
- L3: M, $\pi \mid = X p \text{ iff } \pi^1 \mid = p$ M, $\pi \mid = (p U q) \text{ iff}$ $\pi^j \mid = q \text{ for some } j \ge 0 \text{ and}$ $\pi^k \mid = p \text{ for all } 0 \le k < j$

Formalizing requirements: Example

- Consider an air conditioner with the following operating modes:
- AP={Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}
- At a time, more than one modes may be active
 O E.g. {On, Ventilating}
- When formalizing requirements, we may not yet know the state space (all potential behaviors)

We use only the labels belonging to operating modes

Formalizing requirements: Example

Air conditioner with the following operating modes: AP = {Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}

- The air conditioner can (and will) be turned on
 F On
- At some point, the air conditioner always breaks down
 GF Error
- If the air conditioner breaks down, it eventually gets repaired
 G (Error ⇒ F ¬Error)
- A broken air conditioner does not heat:

G ¬(Error ∧ Heating)

After finishing the heating, the air conditioner must ventilate:
 G ((Heating ∧ X ¬Heating) ⇒ X Ventilating)

After ventilation the air conditioner must not cool strongly until it performs some mild cooling:

G ((Ventilating \land **X** \neg Ventilating) \Rightarrow

X(¬StrongCooling U MildCooling))

Extending LTL for LTS

- LTL: Transitions are labeled by actions
- A path in LTS is an alternating sequence of states and actions:
- $\pi = (s_0, a_1, s_1, a_2, s_2, a_3, ...)$

Extending the syntax:

• L1*: If $a \in Act$ then (a) is a wff.

The corresponding case in semantics:

• L1*: M, π |= (a) iff. a_1 =a where a_1 is the first action in π .

Requirements for action sequences

○ Example: **G** ((coin) \Rightarrow **X** ((coffee) \lor (tee)))

Verification of LTL properties

The model checking problem LTL model checking: The automata-based approach

Model based verification by model checking

Automata based approach

• $A=(\Sigma, S, S_0, \rho, F)$ automaton on finite words

 \circ Here: Σ is formed as letters from the 2^{AP} alphabet

- State labels L(s) are considered as letters
- E.g., {Red, Yellow} is a letter from the alphabet above
- The path $\pi = (s_0, s_1, s_2, \dots s_n)$ identifies a word as follows: (L(s₀), L(s₁), L(s₂), ... L(s_n))
- Two automata are needed:
 - Model automaton: Based on a model M=(S,R,L) an automaton A_M is constructed that accepts and only accepts words that correspond to the paths of M
 - Property automaton: Based on the expression p an automaton A_p is constructed that accepts and only accepts words that correspond to paths on which p is true

Model checking using the automata

- - I.e., is the language of the model automaton included in the language of the property automaton?
 - If yes, them $M,\pi \mid = p$ for all paths of M

L(A_M) L(A_p)

- Verifying $L(A_M) \subseteq L(A_p)$ by alternative ways
 - Is the intersection of the following languages empty: $L(A_M) \cap L(A_p)^C$ where $L(A_p)^C$ is the complement language of $L(A_p)$
 - $\,\circ\,$ Is the language that is accepted by the $A_M\times A_p{}^c$ product automaton empty, where $A_p{}^c$ is the complement of A_p
 - In case of finite words (finite behavior): The language is empty if there is no reachable accepting state in $A_M \times A_p^{c}$
 - In case of infinite words (cyclic behavior): Büchi acceptance criteria can be used (→ no cyclic behavior with accepting states)
 - A_p^c construction (in fully defined and deterministic case): swapping accepting states with non-accepting states and vice versa

Overview of automata based model checking

(In the following: Basic ideas will be discussed, not a complete algorithm.)

Example: Checking F P \land G Q

Overview of automata based model checking

Constructing A_M on the basis of M

- Labels are moved to outgoing transitions
- In case of finite behavior (finite words):
 - Accepting state s_f is added
 - Transitions are added from the end states (without outgoing transition) to the accepting state s_f

• Formally the automaton:

 $\mathsf{A}_{\mathsf{M}} {=} (2^{\mathsf{AP}}, \, S {\cup} \{s_{\mathsf{f}}\}, \, \{s_{\mathsf{0}}\}, \, \rho, \, \{s_{\mathsf{f}}\})$

where the transitions relation is the following:

 $\rho = \{ (s,L(s),t) \mid (s,t) \in R \} \cup \\ \{ (s,L(s),s_f) \mid no \ t, such \ that \ (s,t) \in R \}$

Overview of automata based model checking

Constructing A_p on the basis of p: The basic idea

- A_p automaton: Shall represent those paths on which p is true
- Basic idea: Decompose the expression similarly to the tableau method and this way identify the states and transitions of A_p
 - First decomposition: Identifies the initial state(s) of A_p
 - Labels of the state: Based on the atomic propositions (i.e., without temporal operators) resulting from the decomposition
 - Outgoing transitions to next states: Identified by the (sub)expressions with temporal operators, that have to be true from the next state
 - New decomposition for each formula belonging to a next state
- Initial step: Construct the negated normal form of the expression
 - For Boolean operators: de Morgan laws
 - For temporal operators:

¬(X p) = X (¬p)

 \neg (p U q) can be handled by defining the R "release" operator:

 \neg (p U q) = (\neg p) R (\neg q), from which p R q = q \land (p \lor X (p R q))

Constructing A_p on the basis of p: Data structure

- Data structure (a record) to represent the decomposition:
 - New: list of expressions to be decomposed
 - Local: atomic propositions related to the current state
 - Next: expression that has to be true from the next state

Constructing A_p on the basis of p: Decomposition rules

Decomposition rules for ^ and V:

Constructing A_p on the basis of p: Decomposition rules

Decomposition rules for X and U:

based on the rule $p U q = q \lor (p \land X(p U q))$

Constructing A_p on the basis of p: Decomposition rules

Decomposition rule for R:

based on the rule p R q = q \land (p \lor X(p R q))

Constructing A_p on the basis of p (6)

- States: A state of the A_p automaton is identified from a node of the decomposition if:
 - There are only atomic propositions in the New field of the node; these are copied to the Local field and become state labels,
 - and there is no state in A_p that was identified based on a node with the same Local and Next fields (otherwise the same state is identified again)
- Transitions: If a state s of the A_p automaton is identified then:
 - A new decomposition is started from the expression that is in the Next field of the node (copying it to the New field of a new node), since the Next field identifies property to be satisfied from the next state
 - Transitions of A_p are drawn from the state s to the states that result from the new decomposition
- Summary:
 - A_p states are identified when the decomposition results in atomic propositions (there is no further operator to be decomposed)
 - A_p transitions from a state s are drawn to the states that result from the decomposition of the formula in the Next field of the node belonging to s

Example: P U (Q \vee R)

м Ú Е G Y Е Т Е М 1 7 8 2

Constructing A_p on the basis of p (7)

- Further elements of A_p:
 - o Initial state(s):
 - State(s) resulting from the first decomposition
 - Accepting states (in finite case):
 - When the Next field is empty (no formula refers to the next state)
 - Labeling of a state: All subsets of AP that are compatible with the atomic propositions found in the Local field of the node belonging to the state
 - Each atomic proposition is included that is non-negated in Local
 - There is no atomic proposition that is negated in Local

Since each behavior is to be included in A_p that is allowed by the propositions in the Local field

Example: P U (Q \vee R) with AP={P,Q,R}

Complexity of PLTL model checking

Worst-case time complexity of model checking the expression p on model M=(S,R,L):

$O(|S|^2 \times 2^{|p|})$, where

- **|S|** is the number of states
- o **p** is the number of operators in the LTL formula
- |S|² is the number of transitions in the model automaton (maximum number of transitions; typically only linear with S)
- 2^{|p|} is the number of transitions in the property automaton (maximum number of sub-expressions to be decomposed and resulting in new transitions)
- |S|²×2^{|p|} results from the state space of the product automaton (in which accepting states or cycles shall be found)
- The exponential complexity seems frightening, but
 - The LTL expressions are typically short (a few operators)
 - Complexity results from the size of the model automaton

The model checker SPIN

Summary

- Temporal operators of LTL
- Formal syntax and semantics of LTL
 Extending LTL to LTS
- Examples
- Verification of LTL properties
 - The model checking problem
 - LTL model checking: Automata based approach