Software Verification and Validation (VIMMDO052)

Model checking:
Examples

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

(g gy
MUEGYETEM 1782

Formal verification: Goals

“Informal” “Informal”
design properties
Formal model: Formalized properties:
KS, LTS, automata CTL

Formal verification:
Model checking

OK Diagnostic trace

Example 1:

Mutual exclusion protocol

An engineering task

= Let us consider a concurrent (multi-process) system

= At most one process is allowed to access a shared
resource at a time (mutual exclusion is required)

o Example: Use of communication channel

o Access to resource: “Critical sections” in the programs;
at most one process is allowed to be in critical section

o The platform (OS, framework) does not give support:
no semaphore, no monitor, etc.

o Only shared variables can be used (atomic reading/writing)
" How to do it?

o Classical solutions (Peterson, Lamport, Fischer etc.)
o Custom algorithm

Algorithm for mutual exclusion

= 2 processes, 3 shared variables (H. Hyman, 1966)
o blockedO: process 1 (PO) wants to enter
o blockedl: process 2 (P1) wants to enter

o turn: which process is allowed to enter (O for PO, 1 for P1)
while (true) { PO while (true) { P1
blocked0 = true; blockedl = true;
while (turn!=0){ = -=-====--~_ . while (turn!=1) {
while (blocked1==true) {\ R while (blocked0==true) {
skip; N M skip;
} AN)
turn=0; \\\ N turn=1;
} No }
// Critical section Mo // Critical section
blocked0 = false; ™ blocked1 = false;
// Do other things // Do other things
} }

Is the algorithm correct?

The model in UPPAAL (version 1)

Declarations: Used modeling artefacts:
bool blockedO; e Global variables
bool blocked1; e Variables with restricted domain

int[0,1] turn=0;
system PO, P1;

Automaton PO:

blocked0:=false

- ‘-*‘@

while (true) { P
blocked0 = true; 0

while (turn!=0) {
Check_turn "'-\. turn:=0 My_turn while (blOCde].: =true) {
- skip;

}

turn=0;

blocked1==false
s
// Critical section
blockedO = false;

// Do other things

blocked!1==true

cs Wait_blocked }

Check_blocked

The model in UPPAAL

(version 2)

Declarations: Used modeling artefacts:

bool blocked[2]; o

int[0,1] turn; o
PO = P(0); o
P1 = P(1); .

system PO,P1;

Template P with parameter const int pid:

Init

. =0

blocked[pid]:=false

blocked[pid]:=true

Wy Check turn

> turmn := pid My _turn

turn==pid turn = pid

blocked[1-pid]==false

blocked[1-pid]==true

Cs Check_blocked

Global variables
Variables with restricted domain
Variables of array type

Modeling common behavior with
templates

Template instantiation with
parameters

while (true) { PO
blocked0 = true;

while (turn!=0) {
while (blocked1l==true) {
skip;
by
turn=0;
bs
/ / Critical section
blockedO = false;
// Do other things

Wait_blocked

Properties to verify in the example

= Mutual exclusion:

o At most one process is allowed to be in the critical
section

= The expected behavior is possible:

o For PO it is possible to enter the critical section
o For P1 it is possible to enter the critical section

= Starvation freedom:
o PO will eventually enter the critical section
o P1 will eventually enter the critical section

"= Deadlock freedom:
o It is not possible that processes are just waiting

How to do model checking in UPPAAL?

= Atomic propositions:
o Values of variables can be referred: e.g., al=1
* Using integer arithmetic and bit operations

o Control locations can be referred: e.g., Train.cross
* For parameterized processes: forall, exists quantifiers

o Deadlock (no action): Specific deadlock proposition

= Boolean operators:
o and, or, imply, not, ? : (this latter is the “if-then-else”)

= Temporal operators: Restricted CTL

o Notation: [] instead of G, and <> instead of F
* This way we have CTL operators: A[], A<>, E[], E<>
 [] is also interpreted on finite paths (till the last state)

o Temporal operators cannot be nested
e But there is a special operator: p-->q means A[] (p imply A<> q)

Configuring model checking in UPPAAL

= Set of properties can be provided
o Model checking can be started one-by-one
= Diagnostic trace (counter-example or witness) can be
generated
o Some, shortest, or fastest
o It is loaded into the simulator (for debugging)
= Search order in the state space:
o Depth-first, random depth-first
o Breadth-first
= State space representation:
o Compact data structure
o Under- / over-approximation
o Hash table size can be specified

UPPAAL: Formalizing requirements

= Mutual exclusion:
At most one process is allowed to be (Labels for critical
in the critical section sections:
A[] not (PO.cs and P1.cs) \PO'CS i P D
"= The expected behavior is possible:
o For PO it is possible to enter the critical section: E<>(P0.cs)

o For P1itis possible to enter the critical section: E<>(P1.cs)

= Starvation freedom:
PO will eventually enter the critical section: A<>(P0.cs)
P1 will eventually enter the critical section: A<>(P1.cs)

= Deadlock freedom:

It is not possible that processes are just waiting: A[] not deadlock

UPPAAL: Results of model checking

= Mutual exclusion is not ensured

o Counterexample: specific interleaving between the processes
(can be replayed in simulator)

= No deadlock
" The expected behavior is possible

= Starvation freedom cannot be checked without
specification of timing
o Trivial counterexample: Time elapses indefinitely in the initial
location

* Valid timed behavior in the model
* Enforcing progress: urgent location, or location invariants

o Starvation freedom?
* The system is not starvation free (cyclic counterexample exists)

Fixing the algorithm: Mutual exclusion ensured

Hyman’s algorithm

= For process PO
(P1 analogously):

Hyman:

while (true) {
blocked0 = true;
while (turn!=0) {
while (blocked1==true) {
skip;

by

turn=0;
by
// Critical section
blocked0 = false;
// Do other things

Peterson’s algorithm

= For process PO
(P1 analogously):

Peterson:

while (true) {
blocked0 = true;
turn=1;
while (blocked1==true &&
turn!=0) {
skip;
by

// Ciritical section
blocked0 = false;
// Do other things

Example 2:

Dice game

The problem

Game: Rolling a dice What do we have to solve:
= nplayers, 1 referee = Generate random value
= Each player rolls a dice once = Communication
* Then tells the result to the o Value passing
referee o Broadcast communication
= The referee o Handling channel arrays
o Collects all results o Ordering of update sections
o Finds the largest result(s) = Data structures
o Announces the winner(s) = Functions
= Players count the number of = Concurrency and timing
their winning rounds = Model checking

* The winner of the game is
who first won 10 rounds

Basic idea for the solution: Sketch of the models

d It announce
sendresy Winner Referee
. lost won
roll dice count not everybody sent result
next roll?
store result
Start
first roll? everybody sent result
store result find winner
Player

Start

initialize O< announce winner!

data structures

fuligng:
YETEM 1782

Possibilities for modelling transitions in UPPAAL

;'Ei'd'j'i'd“f """"" . = Selection
:'éﬁé";;'b'|'ég,'é}'5“"\ E%Ed't_ i o Non-deterministic choice
isay[pid]? I \&EEdg“' S from the domain of a
-'r'dl'l's'[fil'd]"—' roll,; Select: [pis - iac L/ variable

= Guard

> o Enabling condition (logical
expression)

Synchronization

o Synchronization on a
channel between process
“pairs”

Update

o Expression evaluated

* Evaluation order of expressions: during the transition (may
have side effect)

Guard:

Select » Guard » Sync » Update

Solution: System and the player

system Player, Referee; Player(id_t pid)
const int players = 3; int[0,wins] count = 0;
const int wins = 10; clock x;
. . _ i Waiting
typedef int[0,players-1] id_t; |
typedef int[0,6] dice_t; O
| say! announce?
struct {
id_t who;
dice t what; | RolledQ [_ Counting
} roll; ! | L | |
+ myroll : int[1,6] pid != winner | pid == winner
. roll.who = pid, count++

id t winner; . roll.what = myroll
chan say; —©<)

broadcast chan announce; | Start

. ﬁ’layer: zvf)mng
Solution: Referee

Rolled()) Counting
| I myroll - int{1,6] pid = winner | pid == winne
| . I Fg”-xﬂgtz—prir?jroll countrs
: int [0,players] ans = 0; void reset_rolls() { I o
| dice_t rolls[id_t]; int[O,players] i; _ _k_ — _S‘fr_‘l
' dice_t best =0; |
: for (i = 0; i < players; i++) rolls[i] = 0; I

|
| clock x;) |
| P e - —
I I ans < players
| void find_winner() { | say?
: int[0,players] i; : rolls[roll.who] = roll.what,
: : ans++
' for (i = 0; i < players; i++) { I say? ans >= players
: if (rolls[i] > best) { I rolls[roll.who] = roll.what, ans =0,
_ I ans++ find_winner()
l best = rolls][i]; I
| . . I
nner = i; .

: }W' ! I Receiving

|
I) I Waiting Decision(y)
I I
| best = O; : Announcement
' . O
I i | reset_rolls(), announce!

h e e e e e e e e e - winner =0

Let’s check the behavior (dice _roll 1.0)

= On each path, there is a player who is the winner of the game
o The count of the highest rolls reaches the value of wins
A<> exists (i : id_t) (Player(i).count == wins)
= Referee decides if all players made their rolls
o This happens at least once:
E<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)
o This happens eventually on all paths:

A<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)

= The system has no deadlock

o There is no such state, which has no enabled transition to another state
A[] not deadlock

Let’s check the behavior (dice _roll 1.0)

Owerview

exiats (i : id t) ({Player(i).count == wWins)

Chedk
B> Referee.Decision && forall (i = id t) Beferee.rolla[i] > O
E<> Referee.Decision ss forall (i : id t) Referee.rolls[i] > 0O et

L[] not deadlock Remove

000

Comments

Query
|A*-i=~ exists (i : id_t) (Player(i).count == wins)

Comment

x

Status
All not deadlodk -
Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 - server.,

The verification was aborted due to an error. Most likely, this is caused by an out-ofrange assignment or out-of-range array lookup.
E< > Referee.Dedsion && forall { : id_t) Referee.rolls[i] =0

Property is satizfied.

&« » Referee,Decision && forall (j : id_t) Referee.rolls[i] = 0 it
Property is not satisfied.

A< exists (j @ id_t) (Player().count == wins)
Property is not satisfied.

m

1|

Let’s check the behavior (dice _roll 1.0)

Owerview

A<» exista (1 : id t} (Player(i).count == wWins)

Check
A<> Referee.Decigion && forall (i = id t) Beferee.rollsa[i] > O

E<> Referee.Decision s& forall {i : id_t) Referee.rolls[i] > 0 e

A[] not deadlock

000

Remove

Comments

Query e \
hi}exlsts (i:id_t) (Player(i).count == wins) [DeadIOCk'freeneSS: aborted
S * Win counters may overflow in

the current model
i * (We will not correct it now)

Status \ /
&[] not deadlock S

Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 — server,

The verification was aborted due to an error. Maost likely, this is caused by an out-ofrange assignment or out-of-range array lookup.
E< > Referee.Dedsion && forall (i : id_t) Referee.rolls[i] =0

Property is satizfied.

A== Referee.Dedsion && forall (i : id_t) Referee.ralls[i] =0

Property is not satisfied.

A== exists (i 1 id_t) (Player(i).count == wins) -
Property is not satisfied.

m

1

Let’s check the behavior (dice _roll 1.0)

Owerview

A<» exista (1 : id t} (Player(i).count == wWins)

Check
A<> Referee.Decigion && forall (i = id t) Beferee.rollsa[i] > O

E<> Referee.Decision s& forall {i : id_t) Referee.rolls[i] > 0 e

A[] not deadlock Remove

000

Comments

Query ./

== exists (i : id_t) (Player(i).count == wins) [\
It is possible to reach a state

Comment .
where every player has sent their
result and the referee has noted

. them.

Status

&[] not deadlodk \\\ /

Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577, September 2010 — server,

The verification was aborted due to.arf error. Most likely, this is caused by an out-ofrange assignment or out-of-range array lookup.
E< > Referee.Dedsion && forail (i @ id_t) Referee.rolls[i] =0

Property is satizfied.

A== Referee.Dedsion && forall (i : id_t) Referee.ralls[i] =0

Property is not satisfied.

A== exists (i 1 id_t) (Player(i).count == wins) -
Property is not satisfied.

m

1

Let’s check the behavior (dice _roll 1.0)

Owerview

A<» exista (1 : id t} (Player(i).count == wWins)

Check
A<> Referee.Decigion && forall (i = id t) Beferee.rollsa[i] > O

E<> Referee.Decision s& ferall {i : id_t) Referee.rolls[i] > O e

A[] not deadlock

000

Remove

Comments

ey e
fie outic §f fa D (CErjer cotmt.—wie) [But there is a path where no such h
o state is reachable!

* Trivial counterexample: Timing
y e Other counterexample: Wrong
i??;tdea_m . _ use of concurrency -
Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 — server,

The verification was aborted due to an error. Most likely, this is caused by an out-ofrange assignment or out-of-range array lookup.
E< > Referee.Dedsion && forall (i @ id_t) Referee.rolls[i] =0

Property is satizfied.

A== Referee.Dedsion && forall (i @ id_t) Referee.ralls[i] =0

Property is not satisfied.

A== exists (i 1 id_t) (Player(i).count == wins) -
Property is not satisfied.

m

1

Avoiding trivial counterexample by state invariants

If we examine all possible paths

Waiting
(e.g. A<>) then UPPAAL also X < 1
checks the possibility of not _;(}
leaving a state (if it is a valid 7
behavior)
= Solution: State (location) invariant
o Add a clock variable) ¢ (

o Initialize when entering the state ..__/
. . . . ST id |= winner
o Not leaving a state is valid until the & ", '

state invariant holds
(here in the example: for at most 1 @
time units)

Wrong concurrency — why?

[Player(1~)~ rolled J

— - Il Trmm e
roll. Wi =
Enabled Transitions roll.what 28
Player () - winner =0
Player () Player(0).pld =0
player(0).count -0
Flayer(0) Flayer(1).pid = 1
Player (D) E Player(1).copnt =0
Player () Player(2).pid = 2
Flayer(2) Flayer(2).colint =0
Flayer(2) —| |Referee.ansi=0
Player(2) Referee.rollsfil] =0
Player(2) il Referee.rollsfl] =0

[MNext][Reset]

Simulation Trace

(Start, Start, Start, Waiting)
Flayer(1)
(Start, Rolled, Start, Waiting)

(Rolled, Rolled, Start, Waiting)

Referee,rolls[2] =0
Referee,best =0
Player(0).x == 0
Player(1).x =50
Flayer(2).x ==0
Referee,x >=0
Player(0).x = Player(1).x
Player(1).x = Player(2).x
Flayer(2).x = Referee.x
Referee.x = Plaber(0).x

[Player(0) roll§ J

Player{0)

Player({1}

Waiting Waiting
agnounce? say! announce’
{
Rolled () Counting Rolled)Gounling
0 != winner winner 1 winner
roll who = 0, count++ roll.who = 1, count++
roll what = myroll roll.what = myroll
b b
Start
Player{2) Referee
Waiting ans < players
rolis{roll wha] = roll what,
ans++
announce?
say'’? ans == players
! rells[rell.who] = roll what, ans =0,
ans++ find_winner()
Rolled ())Gounting =
Receiving
1= winner 2 winner — .
rollwho = 2, count++ Wailing Decision
roll.what = myroll Announcement
\ - v Ty
reset_rolls(), Y announce!
Start winner =0

Play

er(0) will overwrite the shared variable

26

Player(1) will

send” wrong one

Avoiding wrong concurrency (dice_roll 1.1)

Player(0): say' Player(1): say'
Rolled@ Rolled©
myroll : int[1,6] myroll : int[1,6]
roll.who = pid, roll.who = pid,
roll.what = myroll roll.what = myroll

= Problem: Concurrent activities of the players on shared variable
o Registering the results: writing to the roll shared variable
o Communication with the referee: using roll with the say! transition
= Potential solution:

o Implementing atomic “update and send” operations by introducing
a “committed” state (it must be left instantly)

Special constructs that can be used (dice_roll _2.0)

= Monitoring an array of channels = Using iterators in functions
o The receiving process checks all void reset_rolls() {
channels “at once” using a Select for (i : id t) rolls[i] = O;
construct } B

o Synchronization is performed on
the channel that is ready

* Channel id can be used in the void find_winner() {
Update section for (i:id_t){
o Model checker will examine all if (rolls[i] > best) {
potential synchronizations best = rolls[i]:

pid :id_t i =i
ans < players winner=1
say[pid]? }
;?,lg‘s_ﬁd] = roll, myroll : int[1,6] }

say[pid]!
roll = myroll

“Compact” model Referee:
pid :id t

ans < players
say[pid]?
* Using arrays of rolisfpid] = roll
ans >= players
channels ans - 0.
find_winner()

* Applying operator et} Decision
u? :n . :u:mg Reset
. . wmner =0, O< announce!
e Collecting results in a reset rolls()
single state
Player: "
« Using iterators Walting
* Reset state can be
omitted myroll : int[1,6] announce?
say|[pid]! count += (pid == winner) ? 1 : 0,
roll = myroll x=0

Start
X<i

Other modeling advices and practices

= QOrder of evaluating arc expressions:
Select » Guard » Sync » Update

o On a synchronized arc, Update of the sender is evaluated before the Update
of the receiver

o Cannot test (in a guard) a global variable that was set by synchronized arc

= Using functions: Checking behavior is difficult

o Statement by statement simulation (debugging) is not possible

= When verifying properties such as A<> q, clock variables must be
used to avoid the trivial counterexample (not leaving a state)

o Note: A<>is also included in “leads to”: p -->» g means A[] (p imply A<>q)

o Do not forget to reset clock variables when necessary

= The model checker of UPPAAL cannot check deadlocks when using
channel or automata level priorities (these should be avoided)

