
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Model checking time-dependent
behavior

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Motivation: Verification of real-time controllers

 Controllers: Time-dependent, state-based, event driven behavior

• Time is spent in states

• Conditions (guards) of transitions refer to time

• Typical implementation: Timers measuring time by counting clock ticks

• Actions to reset timers

 Typical properties to be checked

• Satisfying deadlines:
Reaching a given state in a given time interval

• E.g., on request, a reply is received in (given) time

• E.g., message that was sent is received in favorable time

• Satisfying safety properties in given time interval:
A property holds in each state that is reachable in a given time interval

• E.g., the behavior is safe during a mission

2

Extensions of “classic” temporal logics

Timed temporal logics (“real-time” logics):

 Requirements of real-time systems
o The properties refer to clock variables

o Handling of time intervals

Other extensions: Stochastic logics

 Probability and timing related requirements:
o E.g.: if the current state is Error then the probability

that this condition holds after 2 time units as well, is less than 30%

 Extension of CTL:
o Interpreted over Continuous-time Markov chains (not a Kripke structure)

o Probability criteria for state reachability (steady state), path execution

o Timing criteria (time intervals) for operators X and U

3

Goal: Formal verification of timed properties

Timed model Timed temporal logic

Formal verification:
Model checking

OK Error

t f

“Informal”
design

“Informal”
properties

4

The modeling approach

 “Engineering” model  Low-level formal model

• The mapping to low-level formal model gives
formal semantics to the engineering model

• Model checking is performed on the formal model

 Similar approach:

• UML statecharts  Kripke structure (KS)

• Checking CTL properties on KS

 Model checking timed properties on timed model:

• Timed Automata (TA)  Timed Transition System (TTS)

• Timed CTL (TCTL) variant  Timed Temporal Logic (TL)

5

Models for time-dependent behavior

Timed Transition Systems

Timed Automata

6

Overview of the approach

Timed Transition
System (TTS)

Timed temporal logic
(TTL)

Formal verification:
Model checking

OK Error

t f

Timed Automata
(TA)

Timed CTL variant
(TCTL)

7

Low-level model: Timed Transition System (TTS)

 Notation (properties of states and transitions):
• Atomic propositions: AP = {P, Q, …}
• Atomic actions: Act = {a, b, c, …}
• Delay actions:  = {(d) | d R0 }

 Definition of TTS: TTS = (S, s0, , V) where
• S set of states
• s0 initial state
•   SLS, where L Act   ( delay action is included)
• V: S2AP labeling of states

s s’
a {P} {P,Q}

s s’
(d) {P} {P}

8

{} {Green}

(25)
{Yellow}

(5)

{Red}

(15)

{Green}

{Yellow} {Red}

Engineering model: Timed Automaton (TA)

 Automaton (states, transitions) + clock variables

• Concurrent (system) clocks

• These all increase with the same pace

• The clock value can be inspected in guards and invariants

• The clocks can be reset in actions, independently from
each other

 Notation for clocks:

• C = {x, y, z, …} clocks

• B(C) expressions on clocks, g B(C) is a clock expression

• Syntax: g ::= x~n | x-y~n | g  g
 where ~  {, , ==, <, >},
 and n non-negative integer (constant)

9

Formal definition of Timed Automaton

 TA = (N, l0, E, Inv, V) with Act, AP, C where

• N control locations (will be part of the state)

• l0N initial location – here the value of clocks is 0

• E  NB(C)Act2CN set of edges, where an edge is

 where

• g: clock expression – guard condition

• a: action – activity

• r: clock set – clocks that are reset

• Inv: N B(C) clock invariants
• Limiting the time spent in a control location

• V: N 2AP labeling (local conditions in control locations)

, , 'g a rl l

10

Example: Notations in a TA model

 Timing condition for transition l1l2:
m  x  m’ for clock x

 The delay in location l1 could be
in the [m, m’] time period:

true

xm’

yn’

true

{P}

{P}

{Q}

{P,Q}

a

b

c

true

{x}

xm

{x,y}

yn

{y}

Label V

Action a

Location

invariant Inv

Edge guard g

Clock(s) to reset r

m m’
t

l0

l1

l2

l3

Location identifier

11

12

Recap: Timed automaton in UPPAAL

Location

Guard

Invariant

Action

clock x;

Example: revolving door

Clock reset

Informal semantics of a Timed Automaton

 Initial state:
o Initial location is active, all clocks are set to 0

 Delay:
o The values of clocks are increased (at the same pace)
o The maximum time that can be spent in a control location is

determined by the location invariant

 Firing of a transition:
o Transition (on an edge) is enabled if

• Source location is active
• Guard condition is satisfied
• Clock resets satisfy the invariant of the target location
• Synchronization (if any – see later) is possible

o Transition that is enabled may fire (random selection)
• Action (variable assignment) executed
• Clocks that were reset become 0
• The target location of the edge becomes active

13

Formal semantics of TA: Notations

 Notations for formalizing the semantics:
• u: C N clock valuation

• u(x) is the value of clock x

• u+d increasing the clock valuation for all clocks by d
• The new value of clock x is u(x)+d

• uv: merging clock valuations for sets of clocks,
where u and v are clock valuations and K, C are independent: CK=0

• uv(x)=u(x) if xC

• uv(x)=v(x) if vK

• [C’0]u for all clocks xC’ the valuation becomes 0,
otherwise remains the same

• g(u) is the evaluation of a guard g in case of valuation u

 State of TA: (l, u) control location and clock valuation
o Valuation of integer variables is similar (not given separately)

14

Formal semantics of TA: Mapping to TTS

 The semantics of a TA is a TTS=(S, s0, , V) where
o S set of states, where each state is in form (l,u)

o s0 = (l0,u0) initial state

o   SLS is defined in the following way:

• (l,u) a (l’,u’) is possible, if there exist r and g such that

• (l,u) (d) (l’,u’) is possible, if

o V(l,u) = V(l) is the labeling of states

control location does not change,
ti

l = l'
u' = u + d d
Inv(

me spent is
clock invariantu' h

 ,
) olds

 





g, a, r edge exists between the locations,
 guard evaluates to true,

 clock

l l'
g(u)

u' = r resets0 u occur

15

Example of the formal semantics of TA

  ε(d) a ε(e)
0 0 1(l ,(0,0)) (l ,(d,d)) (l ,(0,d))true

xm’

yn’

true

{P}

{P}

{Q}

{P,Q}

a

b

c

true

{x}

xm

{x,y}

yn

{y}

l0

l1

l2

l3

  b
1 2(l ,(e,d+ e)) (l ,(0,0))

Condition:
arbitrary delay
d in l0

Resetting clock x
by transition on
edge a

Condition:
 m  e  m’

e time spent
(delay) in l1

Transition on b
will reset both
clocks

x and y
clocks

d and e can be
chosen depending
on the conditions

clock x,y;

 The semantics of a TA determines a set of TTS

o Guards and invariants make various delays possible:
possible delays are in (multidimensional) ranges

 The TTS is defined in case of the example TA as follows:

16

Summary: Formal semantics of TA

Timed Automaton
(TA)

Timed Transition System
(TTS)

TA=(N, l0, E, Inv, V), where
• Set of control location: N

• Initial control location: l0

• Edges with guards, actions and
clocks resets:
E  N  B(C)  Act  2C  N

• Location invariants: Inv: LB(C)

• Location labeling: V: N 2AP

TTS = (S, s0, , V) where
• Set of states: S as (l,u)

• Initial state: s0

• Transitions:   SAS,
A = Act  {(d) | d0}
– Action transitions: Act labels

– Delay transitions: (d)

• Labeling: V: S2AP

Mapping

{} {Green}
(25)

{Yellow}

(5)

{Red}

(15)

{Green}

{Yellow} {Red}

17

Green Yellow

Red

Composition of Timed Automata

 Composition of TA: Network of automata

• Synchronization among automata

• Transitions executed simultaneously (rendezvous)

• Synchronous communication: Sending and receiving on a channel

• Definition of the composition (synchronization):

• Which are the transitions that are executed simultaneously?

• Description: by an f synchronization function,
that is defined on actions (this way implicitly on transitions)

• Example: c! are c? are synchronized, f(c!, c?)=0 – corresponding
transitions are executed simultaneously, resulting in “no action”

• TA1 |f TA2 composition:

• Its semantics is given as a TTS  derived from composition of TTSs

• Before that: Let us define the composition of TTSs

18

Recap: Synchronization in UPPAAL

Declarations:

 clock t, u;

 chan press;

Switch:

User:

“Sending
a message”

“Receiving
a message”

19

Background: Parallel composition of TTSs

 Parameter: synchronization function f

• f: (Act{0})  (Act{0})  Act{0}
where 0 denotes a missing action (also when no transition is taken)

 Definition: Composition TTS1 |f TTS2 = TTS0,

where TTS1=(S1, s1,0, 1, V1) and TTS2=(S2, s2,0, 2, V2)
resulting in TTS0=(S, s0, , V)

• (s1 |f s2)  S (pairs of states are composed)

• s0 = (s1,0 |f s2,0)  S (initial state)

•  is defined inductively (transitions in TTS0):

• (s1 |f s2) e (s’1 |f s’2) if s1 a
1 s’1 and s2 b

2 s’2 and f(a,b)=e

• (s1 |f s2) (d) (s’1 |f s’2) if s1 (d) s’1 and s2 (d) s’2

• V(s1 |f s2) = V1(s1)V2(s2) (union of labeling)

20

Semantics of the parallel composition of TA

 Notation: TA1 |f TA2 network of automata

 Semantics of TA1 |f TA2 is a TTS0 = TTS1 |f TTS2 where
• Semantics of TA1 is TTS1, semantics of TA2 is TTS2

• TA1 |f TA2 is not an automaton, but TTS1 |f TTS2 is a TTS

• Note: It is possible to construct such TA1  TA2 product
automation, that for the semantics of TA1  TA2:
TTS TA1  TA2 ~ TTS1 |f TTS2, i.e., these are bisimulation equivalent
(the definition of bisimulation: see later)

 The f synchronization function in case of UPPAAL TA:
• f(a!,a?)=0 synchronized actions

 (a! ”sending” and a? ”receiving”)

• f(a,0)=a action of the first automaton only

• f(0,a)=a action of the second automaton only

21

Summary: Semantics of the parallel composition of TA

Network of timed
automata
 TA1 |f TA2

Timed transition
system

TTS0 =TTS1 |f TTS2

• Defining synchronized
actions:
f: (Act{}) 
 (Act{})  Act

• TA1 semantics:
TTS1 = (S1, s1,0, 1, V1)

• TA2 semantics:
TTS2 = (S2, s2,0, 2, V2)

TTS0= TTS1 |f TTS2=(S, s0, , V), where
• States: (s1, s2) pairs, s1 S1, s2S2

• Initial state: s0 =(s1,0, s2,0)

• Transitions:  defined as:

– Action transition: (s1, s2)e (s1’, s2’)
 if s1 a

1 s1’ and s2 b
2 s2’ and f(a,b)=e

– Delay transition: (s1, s2)(d) (s1’, s2’)
 if s1 (d) s1’ and s2 (d) s2’

• Labeling of states:
 V(s1, s2) = V1(s1)V2(s2)

Mapping

22

Strange behavior
of timed automata

Time convergence

Timelock

Zenoness

23

Overview

 Strange behavior: “Unrealistic” execution paths,
these may complicate the model checking

• Time convergence: Infinite sequence of delays converges
towards a constant delay

• Timelock: Time cannot progress to infinity

• Zenoness: Performing infinitely many actions in finite time

 Handling these paths:

• Time convergent paths must not be generated as counter-
examples by model checking (these are not “fair” paths)

• Timelock and zenoness can be avoided by proper
construction of the model (imposing delays)

24

Background: Zeno paradox and convergent series

Zeno paradox: Race of Achilles
 The quicker runner (Achilles) gives the

slower runner (tortoise) a head start

 In the race, the quicker runner can never
overtake the slower
o The quicker must first reach the point

where the slower started

o In the meantime the slower moved along

o And so on, so that the slower always
holds a lead

25

From wikipedia:
https://en.wikipedia.org/wiki/Zeno%27s_paradoxes

Convergent series (in mathematics):
 Sequence of infinite partial sums

has a finite limit:

 Example:

Time convergence

 Example automaton:

 Example path in its TTS: valid but not realistic

 Time convergent path (in general):

• Infinite sequence d1, d2, … of delays,
 where d1+d2+… converges to d (constant)

 Time divergent path:
• The sum of delays converges to infinity

26

(1/2) (1/4) (1/8)

Timelock

 A location contains a timelock if there is
no time divergent path from that location

• There is no path on which the time can progress to infinity

• Terminal location is not necessarily a timelock

• If location invariant is true then the time can progress in that
location to infinity

 Example automaton with timelock:

• (on, 2) is reachable, and there is no divergent path

27

Example: Timelock with time convergent path

 Example automaton:

o In its TTS (on, d) is timelock if 2d<3

o Time convergent path to timelock:

28

Zenoness

 Zeno path:

• Time convergent, but at the same time
infinitely many aAct actions can be executed

 Example automaton:

 Zeno paths: sw_on loop without delay

29

sw_on loop with delays but their sum converges to 1:

0.5 + 0.25 + 0.125 + …

Avoiding Zeno paths

 In case of the previous example automaton:

• Imposing (minimal) delays between successive sw_on
actions (this way time will progress)

 Example: The modified automaton model

• The minimal delay is 1 unit (in case of integer clocks)

• The given application-specific delays are increased
(here 100 times)

30

Formalizing properties:
Timed temporal logics

31

Overview of the approach

Timed Transition
System (TTS)

Timed temporal logic
(TTL)

Formal verification:
Model checking

OK Error

t f

Timed Automata
(TA)

Timed CTL variant
(TCTL)

32

Introduction of a Timed Temporal Logic

 Expectations:
• Use clock variables in the logic (intuitive)

• Recursion is allowed in the definition of its semantics

• Formalize the typical safety and liveness properties on TA

• Decidable (properties can be checked)

 Notation:
• K set of formula clocks

• Used in the property formula only (if model clocks are not known)

• Their rate is the same as the rate of the model clocks

• Id identifiers (in TL formula to include recursion)
• ZId variable

• Z can be assigned a formula: Z:=

• D(Z) denotes the assignment: D(Z)=, if Z was assigned 

33

The syntax of Timed TL

  ::= P | c |  |  |  |  | <a> | [a] |
 x in  | x+n ~ y+m | Z

 where PAP, cB(K), aAct, xK, and ZId, m,nN

 Temporal operators (informally):
•  – exists a delay such that  holds
•  – for all delays  holds
• x in  – by resetting x clock  holds
• x+n ~ y+m – comparison of clock expressions

 This Timed TL can be evaluated on TTS (this way also
on TA and network of TA)
• s: (l,u) state of TTS (derived from TA)
• (s,v) notation for TTS state and formula clock valuation v

34

The semantics of Timed TL (1)

 (s,v) |= P for atomic proposition P iff PV(s)

o I.e., P is included among the labels of state s

 (s,v) |= c for clock expression iff c(v) holds

o I.e., in the case of clock valuation v the clock expression c is true

 (s,v) |= 12 iff (s,v) |= 1 and (s,v) |= 2

 (s,v) |= 12 iff (s,v) |= 1 or (s,v) |= 2

 (s,v) |=  iff d,s’: s (d) s’ és (s’,v+d) |= 

o I.e., there exists a state reachable from (s,v) by a delay,
in which  holds

 (s,v) |=  iff d,s’: s (d) s’  (s’,v+d) |= 

o I.e., for all states reachable from (s,v) by delay,  holds

35

The semantics of Timed TL (2)

 (s,v) |= <a> iff s’: s a s’ and (s’,v) |= 

o I.e., there exists a state reachable from (s,v) by action a,
in which  holds

 (s,v) |= [a] iff s’: s a s’  (s’,v) |= 

o I.e., in all states reachable from (s,v) by action a,  holds

 (s,v) |= x in  iff (s,v’) |=  where v’=[{x}0]v

o I.e., by resetting formula clock x,  holds

 (s,v) |= x+n ~ y+m iff v(x)+n ~ v(y)+m

o I.e., comparison holds for the values of the formula clocks

 (s,v) |= Z iff (s,v) |= D(Z)

o I.e., the expression assigned to Z is true on (s,v)

36

Properties of the Timed TL

 Recap: The syntax
  ::= c | P |  |  |  |  | <a> | [a]  |
 x in  | x+n ~ y+m | Z

 Low level, simple operators

• Existential and universal operators for transitions with actions or delay

• „Base logic” (its role is similar to the mu-calculus)

• Expressivity is high (since recursion is allowed,
but this construct in itself is not easy to use and not intuitive)

 Using the Timed TL

• Definition of composite / derived operators from the simple ones

o These are closer to intuition and practical use:
E.g., invariants, UNTIL, UNTIL<t, BEFORE t

• Restrictions in model checkers (e.g., UPPAAL, KRONOS) in order to have
more effective model checking algorithms

37

Useful expressions in the Timed TL

 INV() invariant: it is the recursive expression assigned to Z,
namely Z :=   Z  [Act]Z

here [Act]Z means [a1]Z  [a2]Z  … [an]Z for all aiAct

38

Useful expressions in the Timed TL

 INV() invariant: it is the recursive expression assigned to Z,
namely Z :=   Z  [Act]Z

here [Act]Z means [a1]Z  [a2]Z  … [an]Z for all aiAct

In all states that are reachable by

delay transition, Z will hold

In all states that are reachable by

action transition, Z will hold

These together form a general “next state”

operator for both delay and action transitions

39

If Z holds on M, where Z :=   Z  [Act]Z,
then  is invariant on M

Useful expressions in the Timed TL

 INV() invariant: it is the recursive expression assigned to Z,
namely Z :=   Z  [Act]Z

here [Act]Z means [a1]Z  [a2]Z  … [an]Z for all aiAct

 1 UNTIL 2 „weak until”: it is Z,
where Z := 2  (1  Z  [Act]Z)

 1 UNTIL<n 2  x in ((1  x<n) UNTIL 2)
here x is evaluated after reset, this way time n is relative

  BEFORE n  true UNTIL<n 

 Example: at(li) BEFORE t deadline property
o It means reaching li location before t

o Here notation: at(li) means that the automaton is at control location li

2 will not

necessarily hold

40

Simplification for effective evaluation

 Recap: The original syntax
 ::= c | P |  |  |  |  | <a> | [a]  |
 x in  | x+n ~ y+m | Z

 To formalize safety and bounded liveness properties it is
sufficient to restrict it as follows:

•  omitted (existential quantifier on delays)

• <a> omitted (existential quantifier on actions)

• c formula allowed only

• P formula allowed only

 Invariants, UNTIL, UNTIL<n, BEFORE t can be expressed

41

Timed CTL

42

Timed CTL

 CTL variant with time: Timed Computational Tree Logic

 Characteristics:
o Temporal operators are bound by time intervals

• J = [n,m] bound, with open or closed intervals

o Only the U “until” temporal operator is included in the syntax
• With existential and universal quantifier on paths: EU and AU

AUJ(, ) 

t
0 n m

J=[n,m]

EUJ(, )  

t
0 n m

J=[n,m]



43

Formal syntax of TCTL

TCTL ::= P | g |    |   | EUJ(, ) | AUJ(, )

 Atomic propositions: PAP state labels
 Clock expressions: gB(C)
 Boolean operators in case of  and  formula:

o   
o  

 Temporal operators in case of  and  formula
and J bounded time interval:

o EUJ(, ) – there exists a path on which the following holds:
 holds in time interval J and until that  holds

o AUJ(, ) – on all paths the following holds:
 holds in time interval J and until that  holds

here J is in form [n,m], (n,m], [n,m), (n,m), also m= is possible

44

Defining derived temporal operators

EFJ  = EUJ(true, ) AFJ  = AUJ(true, )

EGJ  = AFJ 

AGJ  = EFJ 

In case of untimed properties: J = [0,)

EFJ 


t
0 n m

J=[n,m]



t
0 n m

J=[n,m]

AFJ 





45

The model checker KRONOS

 Using the TA formalism

 TCTL temporal logic variant

• <> (corresponds to EF)

• [] (corresponds to AG)

• <>=n (reachable in n time units)

• []n (always reached in max. n time units)

 Interesting property that is often specified:

• [] <>=1 true

• In each state the time is able to progress 1 time unit

• It is not possible that “time is stopped”

46

Recap: Temporal operators in UPPAAL

Model of a mutual exclusion protocol (Fischer) for automata:

 Liveness without timing for automation P0:
o After Wait, the critical section will eventually be reached on all paths:

 P0.Wait --> P0.Critical_section

 Timed liveness:
o After Wait, the critical section will be reached on all paths

in less that T time units:

 P0.Wait --> (P0.Critical_section and x<T)

o Note that the x clock is reset when entering Wait

47

Outlook: The basic idea of model checking

 Identification of (time) regions,
where conditions are evaluated to the same truth value
o Conditions determined by invariants and guards in the TA

o There are many potential delays that make a condition true

o This way regions are formed on the clock variables

o The truth of a Timed TL expressions is defined on the regions

 Semantics based model checking:
• Can be solved as a constraint satisfaction problem

• Is there a clock valuation with which  holds?

x

y

0<x<1

0<y<1

y>x
1

1

48

Summary

 Motivation: Checking the models of real-time systems
 Models and mappings

• Timed Transition System (TTS)
• Timed Automata (TA)  TTS
• Network of TA  TTS

 Interesting behavior in models of timed systems
• Time convergence, timelock, zenoness (Zeno path)

 Formalizing properties
• Timed TL
• Timed CTL variants

 Model checking
• Basic idea: regions are manipulated

62

