Model checking time-dependent behavior

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Motivation: Verification of real-time controllers

- Controllers: Time-dependent, state-based, event driven behavior
 - Time is spent in states
 - Conditions (guards) of transitions refer to time
 - Typical implementation: Timers measuring time by counting clock ticks
 - Actions to reset timers
- Typical properties to be checked
 - Satisfying deadlines: Reaching a given state in a given time interval
 - E.g., on request, a reply is received in (given) time
 - E.g., message that was sent is received in favorable time
 - Satisfying safety properties in given time interval:
 A property holds in each state that is reachable in a given time interval
 - E.g., the behavior is safe during a mission

Extensions of "classic" temporal logics

Timed temporal logics ("real-time" logics):

- Requirements of real-time systems
 - The properties refer to clock variables
 - Handling of time intervals

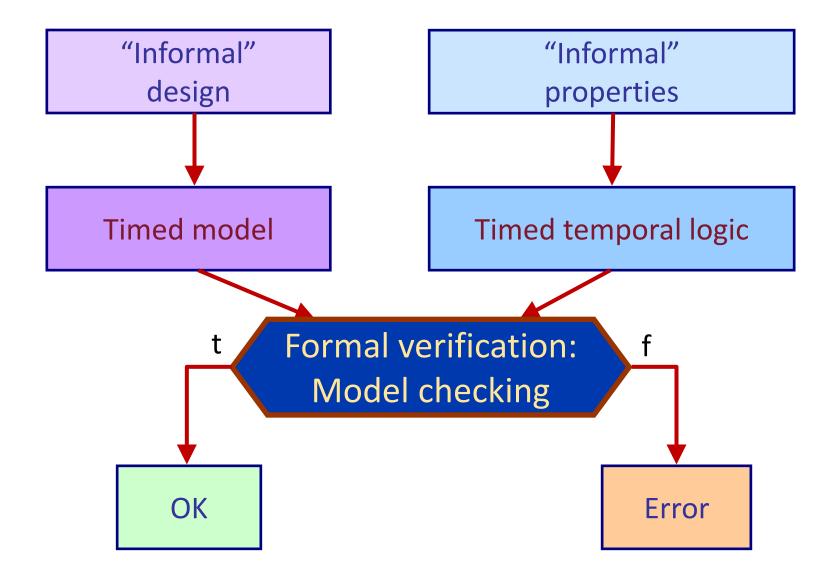
Other extensions: Stochastic logics

- Probability and timing related requirements:
 - E.g.: if the current state is Error then the probability that this condition holds after 2 time units as well, is less than 30%

Extension of CTL:

- Interpreted over Continuous-time Markov chains (not a Kripke structure)
- Probability criteria for state reachability (steady state), path execution
- Timing criteria (time intervals) for operators X and U

Goal: Formal verification of timed properties



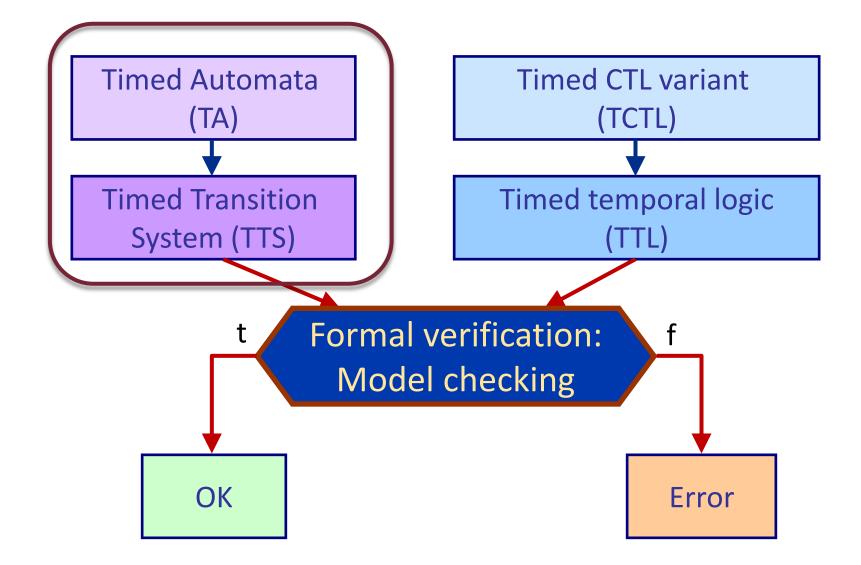
The modeling approach

- "Engineering" model \rightarrow Low-level formal model
 - The mapping to low-level formal model gives formal semantics to the engineering model
 - Model checking is performed on the formal model
- Similar approach:
 - UML statecharts \rightarrow Kripke structure (KS)
 - Checking CTL properties on KS
- Model checking timed properties on timed model:
 - Timed Automata (TA) → Timed Transition System (TTS)
 - Timed CTL (TCTL) variant → Timed Temporal Logic (TL)

Models for time-dependent behavior

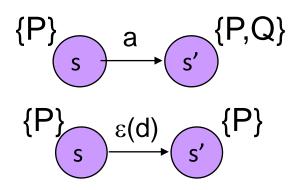
Timed Transition Systems Timed Automata

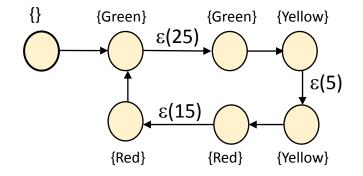
Overview of the approach



Low-level model: Timed Transition System (TTS)

- Notation (properties of states and transitions):
 - Atomic propositions: AP = {P, Q, ...}
 - Atomic actions: Act = {a, b, c, ...}
 - Delay actions: $\Delta = \{ \varepsilon(d) \mid d \in R_{\geq 0} \}$
- Definition of TTS: TTS = (S, s_0 , \rightarrow , V) where
 - S set of states
 - s₀ initial state
 - $\rightarrow \subseteq S \times L \times S$, where $L \in Act \cup \Delta$ (Δ delay action is included)
 - V: $S \rightarrow 2^{AP}$ labeling of states





Engineering model: Timed Automaton (TA)

- Automaton (states, transitions) + clock variables
 - Concurrent (system) clocks
 - These all increase with the same pace
 - The clock value can be inspected in guards and invariants
 - The clocks can be reset in actions, independently from each other
- Notation for clocks:
 - C = {x, y, z, ...} clocks
 - B(C) expressions on clocks, $g \in B(C)$ is a clock expression
 - Syntax: $g ::= x^n | x-y^n | g \land g$

where $\sim \in \{\leq, \geq, ==, <, >\},$

and n non-negative integer (constant)

Formal definition of Timed Automaton

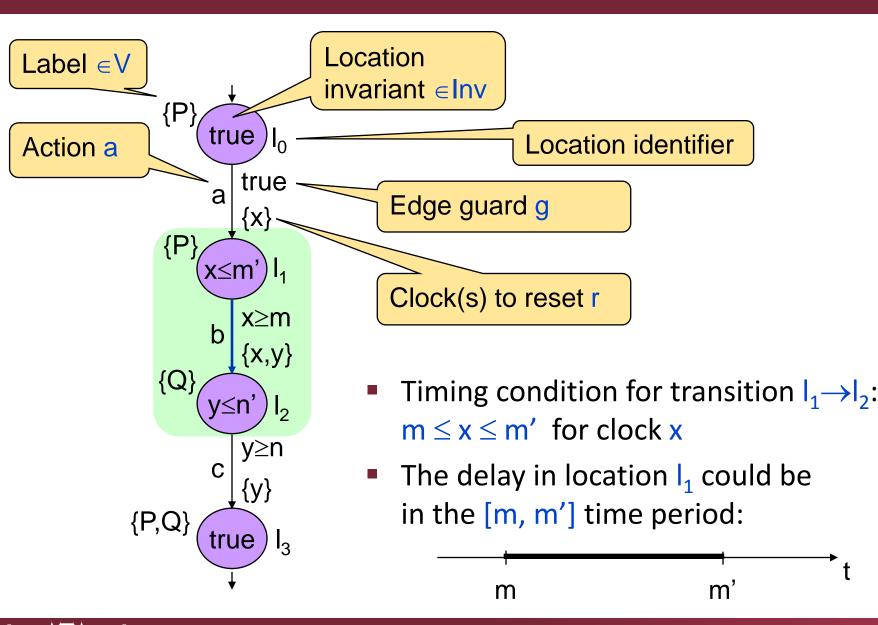
- TA = (N, I_0, E, Inv, V) with Act, AP, C where
 - N control locations (will be part of the state)
 - $I_0 \in \mathbb{N}$ initial location here the value of clocks is 0
 - $E \subseteq N \times B(C) \times Act \times 2^{C} \times N$ set of edges, where an edge is

$$l \xrightarrow{g, a, r} l'$$

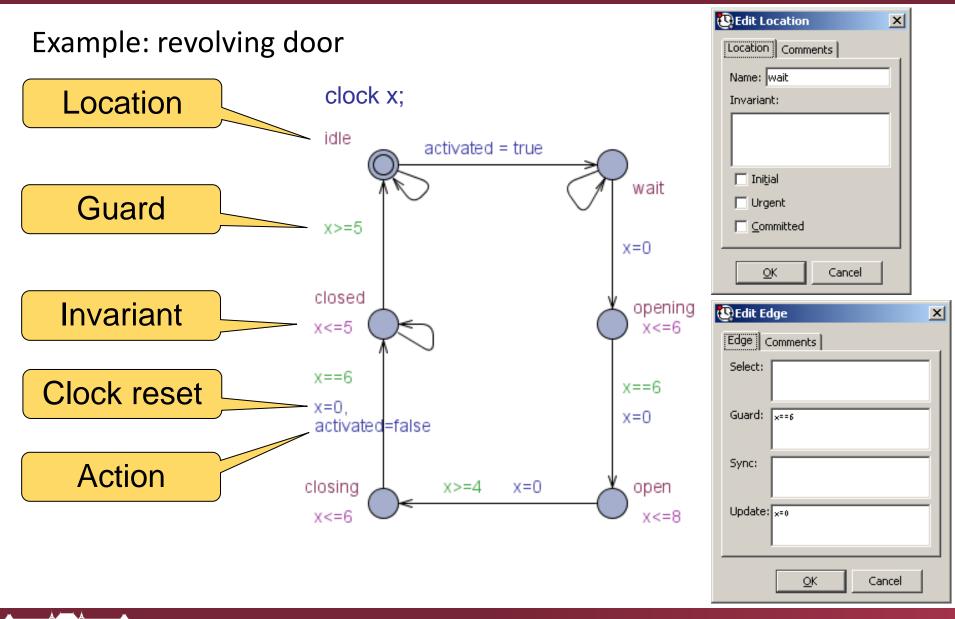
where

- g: clock expression guard condition
- a: action activity
- r: clock set clocks that are reset
- Inv: $N \rightarrow B(C)$ clock invariants
 - Limiting the time spent in a control location
- V: $N \rightarrow 2^{AP}$ labeling (local conditions in control locations)

Example: Notations in a TA model



Recap: Timed automaton in UPPAAL



Informal semantics of a Timed Automaton

Initial state:

Initial location is active, all clocks are set to 0

Delay:

- The values of clocks are increased (at the same pace)
- The maximum time that can be spent in a control location is determined by the location invariant

Firing of a transition:

- Transition (on an edge) is enabled if
 - Source location is active
 - Guard condition is satisfied
 - Clock resets satisfy the invariant of the target location
 - Synchronization (if any see later) is possible
- Transition that is enabled may fire (random selection)
 - Action (variable assignment) executed
 - Clocks that were reset become 0
 - The target location of the edge becomes active

Formal semantics of TA: Notations

- Notations for formalizing the semantics:
 - u: $C \rightarrow N$ clock valuation
 - u(x) is the value of clock x
 - u+d increasing the clock valuation for all clocks by d
 - The new value of clock x is u(x)+d
 - uv: merging clock valuations for sets of clocks, where u and v are clock valuations and K, C are independent: C
 K=0
 - uv(x)=u(x) if $x \in C$
 - uv(x)=v(x) if $v \in K$
 - [C'→0]u for all clocks x∈C' the valuation becomes 0, otherwise remains the same
 - g(u) is the evaluation of a guard g in case of valuation u
- State of TA: (I, u) control location and clock valuation

• Valuation of integer variables is similar (not given separately)

Formal semantics of TA: Mapping to TTS

- The semantics of a TA is a TTS=(S, s_0 , \rightarrow , V) where
 - S set of states, where each state is in form (I,u)
 - \circ s₀ = (I₀, u₀) initial state
 - $\circ \rightarrow \subseteq S \times L \times S$ is defined in the following way:
 - $(I,u) \rightarrow^{a} (I',u')$ is <u>possible</u>, if there exist r and g such that

 $I \xrightarrow{g, a, r} I'$ edge exists between the locations, g(u) guard evaluates to true, u' = $[r \rightarrow 0]u$ clock resets occur

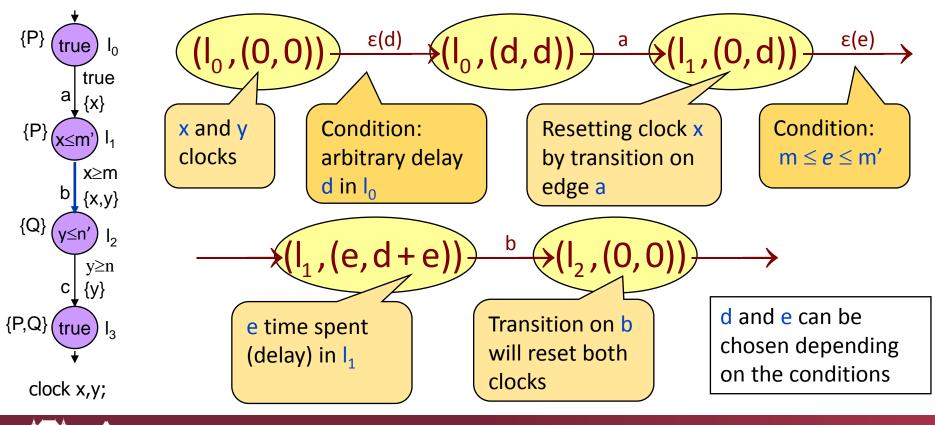
• (I,u) $\rightarrow^{\epsilon(d)}$ (I',u') is <u>possible</u>, if

I = I' control location does not change, u' = u + d time spent is d, Inv(u') clock invariant holds

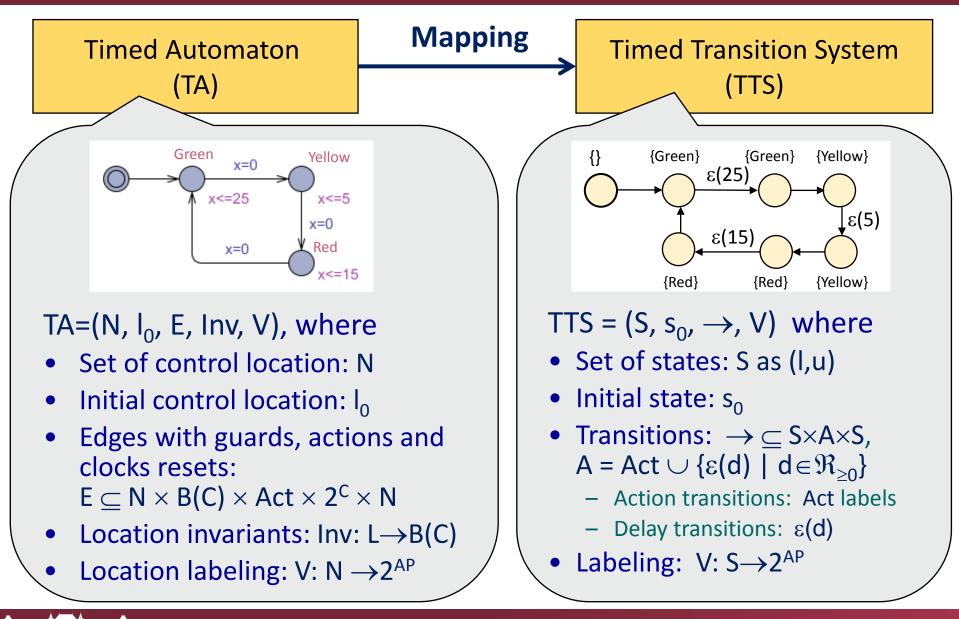
 \circ V(I,u) = V(I) is the labeling of states

Example of the formal semantics of TA

- The semantics of a TA determines a set of TTS
 - Guards and invariants make various delays possible: possible delays are in (multidimensional) ranges
- The TTS is defined in case of the example TA as follows:



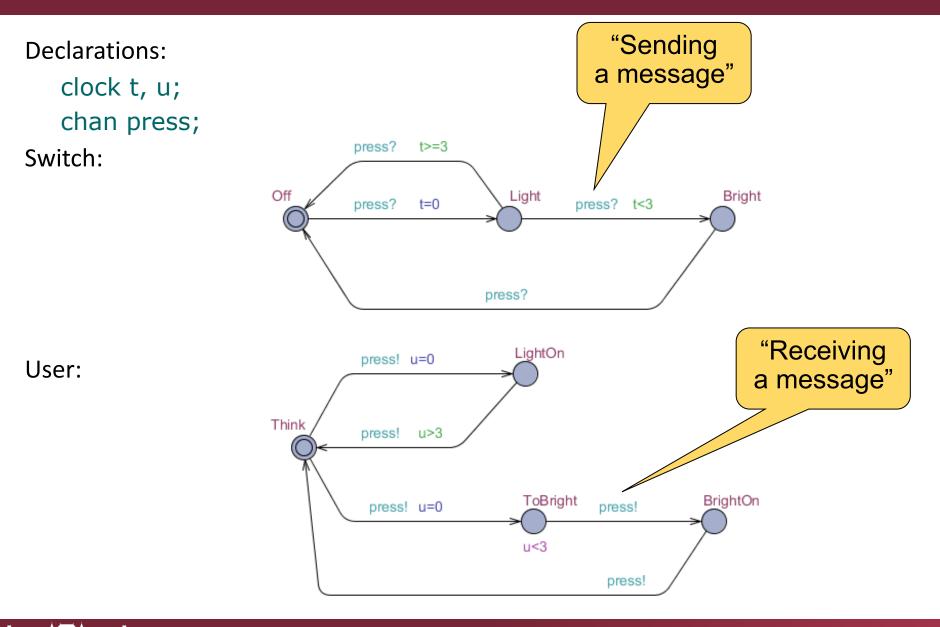
Summary: Formal semantics of TA



Composition of Timed Automata

- Composition of TA: Network of automata
 - Synchronization among automata
 - Transitions executed simultaneously (rendezvous)
 - Synchronous communication: Sending and receiving on a channel
 - Definition of the composition (synchronization):
 - Which are the transitions that are executed simultaneously?
 - Description: by an f synchronization function, that is defined on actions (this way implicitly on transitions)
 - Example: c! are c? are synchronized, f(c!, c?)=0 corresponding transitions are executed simultaneously, resulting in "no action"
 - TA₁ |_f TA₂ composition:
 - Its semantics is given as a TTS ← derived from composition of TTSs
 - Before that: Let us define the composition of TTSs

Recap: Synchronization in UPPAAL



<u>м ú е д у</u> е т е м 1 7 8 2

Background: Parallel composition of TTSs

- Parameter: synchronization function f
 - f: (Act∪{0}) × (Act∪{0}) → Act∪{0}
 where 0 denotes a missing action (also when no transition is taken)
- Definition: Composition TTS₁ |_f TTS₂ = TTS₀,

where $TTS_1=(S_1, s_{1,0}, \rightarrow_1, V_1)$ and $TTS_2=(S_2, s_{2,0}, \rightarrow_2, V_2)$ resulting in $TTS_0=(S, s_0, \rightarrow, V)$

- $(s_1 |_f s_2) \in S$ (pairs of states are composed)
- $s_0 = (s_{1,0} |_f s_{2,0}) \in S$ (initial state)
- \rightarrow is defined inductively (transitions in TTS₀):
 - $(s_1 |_f s_2) \rightarrow^e (s'_1 |_f s'_2)$ if $s_1 \rightarrow^a_1 s'_1$ and $s_2 \rightarrow^b_2 s'_2$ and f(a,b)=e
 - $(s_1 |_f s_2) \rightarrow^{\epsilon(d)} (s'_1 |_f s'_2)$ if $s_1 \rightarrow^{\epsilon(d)} s'_1$ and $s_2 \rightarrow^{\epsilon(d)} s'_2$
- $V(s_1 |_f s_2) = V_1(s_1) \cup V_2(s_2)$ (union of labeling)

Semantics of the parallel composition of TA

- Notation: TA₁ |_f TA₂ network of automata
- Semantics of $TA_1 |_f TA_2$ is a $TTS_0 = TTS_1 |_f TTS_2$ where
 - Semantics of TA₁ is TTS₁, semantics of TA₂ is TTS₂
 - TA₁ |_f TA₂ is not an automaton, but TTS₁ |_f TTS₂ is a TTS
 - Note: It is possible to construct such TA₁ ⊗ TA₂ product automation, that for the semantics of TA₁ ⊗ TA₂: TTS TA1 ⊗ TA2 ~ TTS₁ |_f TTS₂, i.e., these are bisimulation equivalent (the definition of bisimulation: see later)

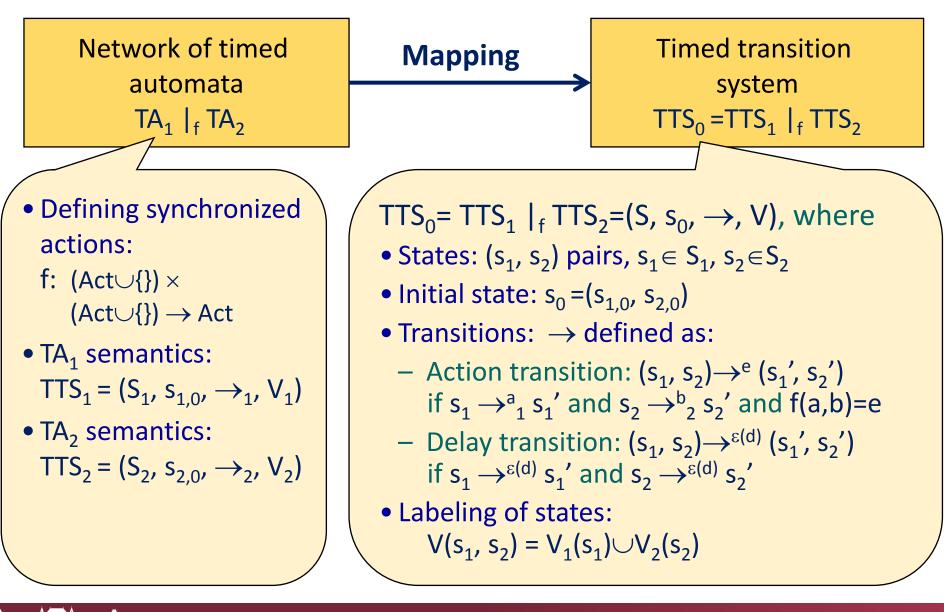
The f synchronization function in case of UPPAAL TA:

f(a!,a?)=0 synchronized actions
 (al "sonding" and a? "re

(a! "sending" and a? "receiving")

- f(a,0)=a action of the first automaton only
- f(0,a)=a action of the second automaton only

Summary: Semantics of the parallel composition of TA



Strange behavior of timed automata

Time convergence

Timelock

Zenoness

Overview

- Strange behavior: "Unrealistic" execution paths, these may complicate the model checking
 - Time convergence: Infinite sequence of delays converges towards a constant delay
 - Timelock: Time cannot progress to infinity
 - Zenoness: Performing infinitely many actions in finite time
- Handling these paths:
 - Time convergent paths must not be generated as counterexamples by model checking (these are not "fair" paths)
 - Timelock and zenoness can be avoided by proper construction of the model (imposing delays)

Background: Zeno paradox and convergent series

Zeno paradox: Race of Achilles

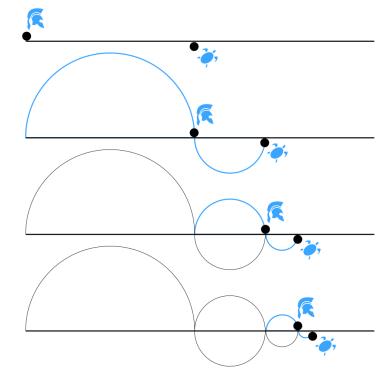
- The quicker runner (Achilles) gives the slower runner (tortoise) a head start
- In the race, the quicker runner can never overtake the slower
 - The quicker must first reach the point where the slower started
 - In the meantime the slower moved along
 - And so on, so that the slower always holds a lead

Convergent series (in mathematics):

• Sequence of infinite partial sums has a finite limit: $L = \sum_{n=1}^{\infty} a_n$

$$L = \sum_{n=0}^{\infty} a_n.$$

• Example: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots$



Time convergence

on

x <= 2

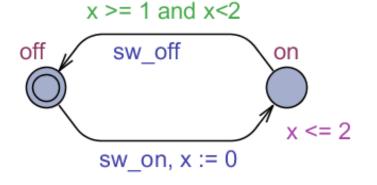
- Example automaton:
 x >= 1
 off sw_off
 sw_on, x := 0
 - Example path in its TTS: valid but not realistic

 $\langle \textit{off}, 0 \rangle \xrightarrow{\epsilon(1/2)} \langle \textit{off}, 1-2^{-1} \rangle \xrightarrow{\epsilon(1/4)} \langle \textit{off}, 1-2^{-2} \rangle \xrightarrow{\epsilon(1/8)} \langle \textit{off}, 1-2^{-3} \rangle \dots \dots$

- Time convergent path (in general):
 - Infinite sequence d₁, d₂, ... of delays, where d₁+d₂+... converges to d (constant)
- Time divergent path:
 - The sum of delays converges to infinity

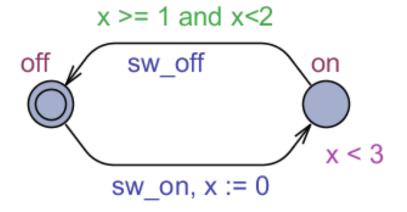
Timelock

- A location contains a timelock if there is no time divergent path from that location
 - There is no path on which the time can progress to infinity
 - Terminal location is not necessarily a timelock
 - If location invariant is true then the time can progress in that location to infinity
- Example automaton with timelock:
 - (on, 2) is reachable, and there is no divergent path



Example: Timelock with time convergent path

Example automaton:

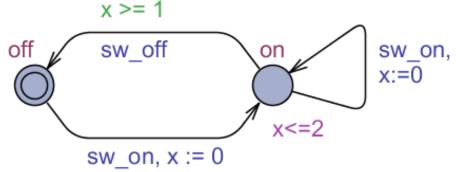


○ In its TTS (on, d) is timelock if 2≤d<3
○ Time convergent path to timelock:

 $\langle on, 2 \rangle \langle on, 2.9 \rangle \langle on, 2.99 \rangle \langle on, 2.999 \rangle \langle on, 2.9999 \rangle \dots$

Zenoness

- Zeno path:
 - Time convergent, but at the same time infinitely many a∈Act actions can be executed
- Example automaton:



Zeno paths:

sw_on loop without delay

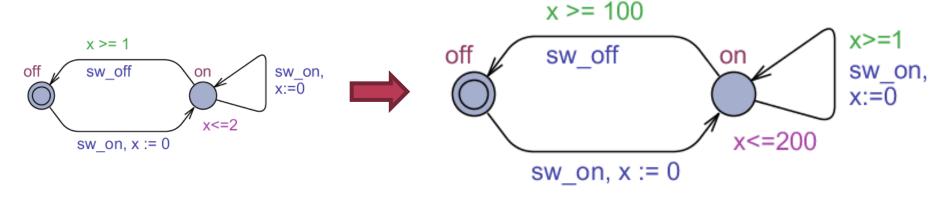
$$\langle off, 0 \rangle \xrightarrow{\text{sw_on}} \langle on, 0 \rangle \xrightarrow{\text{sw_on}} \dots$$

 $\langle off, 0 \rangle \xrightarrow{\text{sw_on}} \langle on, 0 \rangle \xrightarrow{0.5} \langle on, 0.5 \rangle \xrightarrow{\text{sw_on}} \langle on, 0 \rangle \xrightarrow{0.25} \langle on, 0.25 \rangle \xrightarrow{\text{sw_on}} \dots$

sw_on loop with delays but their sum converges to 1: 0.5 + 0.25 + 0.125 + ...

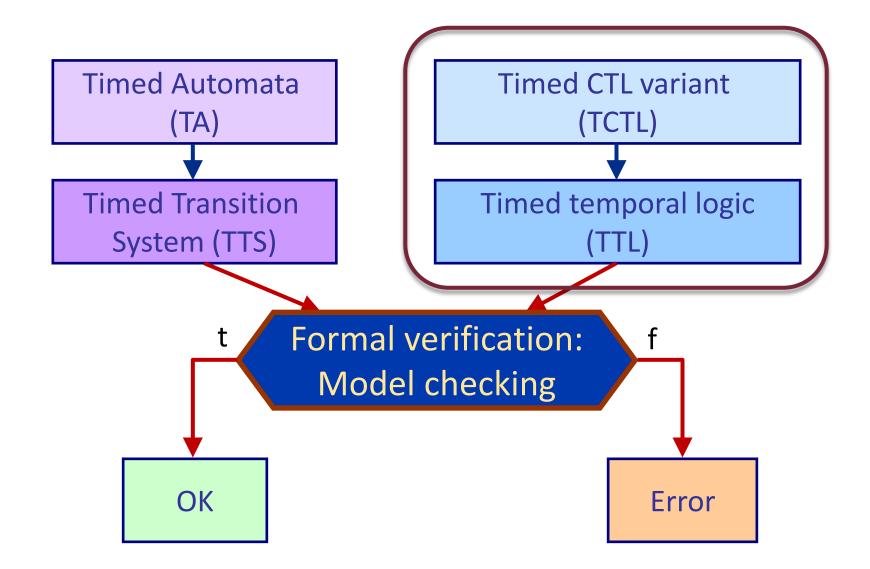
Avoiding Zeno paths

- In case of the previous example automaton:
 - Imposing (minimal) delays between successive sw_on actions (this way time will progress)
- Example: The modified automaton model
 - The minimal delay is 1 unit (in case of integer clocks)
 - The given application-specific delays are increased (here 100 times)



Formalizing properties: Timed temporal logics

Overview of the approach



Introduction of a Timed Temporal Logic

- Expectations:
 - Use clock variables in the logic (intuitive)
 - Recursion is allowed in the definition of its semantics
 - Formalize the typical safety and liveness properties on TA
 - Decidable (properties can be checked)
- Notation:
 - K set of formula clocks
 - Used in the property formula only (if model clocks are not known)
 - Their rate is the same as the rate of the model clocks
 - Id identifiers (in TL formula to include recursion)
 - Z∈Id variable
 - Z can be assigned a formula: $Z:=\phi$
 - D(Z) denotes the assignment: D(Z)= ϕ , if Z was assigned ϕ

The syntax of Timed TL

• $\varphi ::= P | c | \phi \land \phi | \phi \lor \phi | \exists \phi | \forall \phi | <a>\phi | [a]\phi | x in \phi | x+n ~ y+m | Z$

where $P \in AP$, $c \in B(K)$, $a \in Act$, $x \in K$, and $Z \in Id$, $m, n \in N$

- Temporal operators (informally):
 - $\exists \phi$ exists a delay such that ϕ holds
 - $\forall \phi$ for all delays ϕ holds
 - $x in \phi$ by resetting x clock ϕ holds
 - x+n ~ y+m comparison of clock expressions
- This Timed TL can be evaluated on TTS (this way also on TA and network of TA)
 - s: (I,u) state of TTS (derived from TA)
 - (s,v) notation for TTS state and formula clock valuation v

The semantics of Timed TL (1)

- (s,v) |= P for atomic proposition P iff P∈V(s)
 o I.e., P is included among the labels of state s
- (s,v) |= c for clock expression iff c(v) holds
 I.e., in the case of clock valuation v the clock expression c is true
- (s,v) $|=\phi_1 \land \phi_2$ iff (s,v) $|=\phi_1$ and (s,v) $|=\phi_2$
- (s,v) $|= \phi_1 \lor \phi_2$ iff (s,v) $|= \phi_1$ or (s,v) $|= \phi_2$
- (s,v) $|= \exists \phi \text{ iff } \exists d,s': s \rightarrow^{\epsilon(d)} s' \text{ és } (s',v+d) |= \phi$

 $\,\circ\,$ I.e., there exists a state reachable from (s,v) by a delay, in which ϕ holds

• (s,v) $|= \forall \phi \text{ iff } \forall d,s': s \rightarrow^{\epsilon(d)} s' \Rightarrow (s',v+d) |= \phi$

 $\,\circ\,$ I.e., for all states reachable from (s,v) by delay, ϕ holds

The semantics of Timed TL (2)

• (s,v) $| = \langle a \rangle \phi$ iff $\exists s': s \rightarrow^a s'$ and (s',v) $| = \phi$

 $\,\circ\,$ I.e., there exists a state reachable from (s,v) by action a, in which ϕ holds

- $(s,v) \models [a]\phi \text{ iff } \forall s': s \rightarrow^a s' \Rightarrow (s',v) \models \phi$
 - \circ I.e., in all states reachable from (s,v) by action a, ϕ holds
- (s,v) $|= x \text{ in } \phi$ iff (s,v') $|= \phi$ where v'=[{x} \rightarrow 0]v

 $\,\circ\,$ I.e., by resetting formula clock x, ϕ holds

(s,v) |= x+n ~ y+m iff v(x)+n ~ v(y)+m

I.e., comparison holds for the values of the formula clocks

(s,v) |= Z iff (s,v) |= D(Z)

○ I.e., the expression assigned to Z is true on (s,v)

Properties of the Timed TL

Recap: The syntax

 $\begin{array}{l} \phi::=c \mid P \mid \phi \land \phi \mid \phi \lor \phi \mid \exists \phi \mid \forall \phi \mid <a > \phi \mid [a] \phi \mid \\ x \text{ in } \phi \mid x + n \sim y + m \mid Z \end{array}$

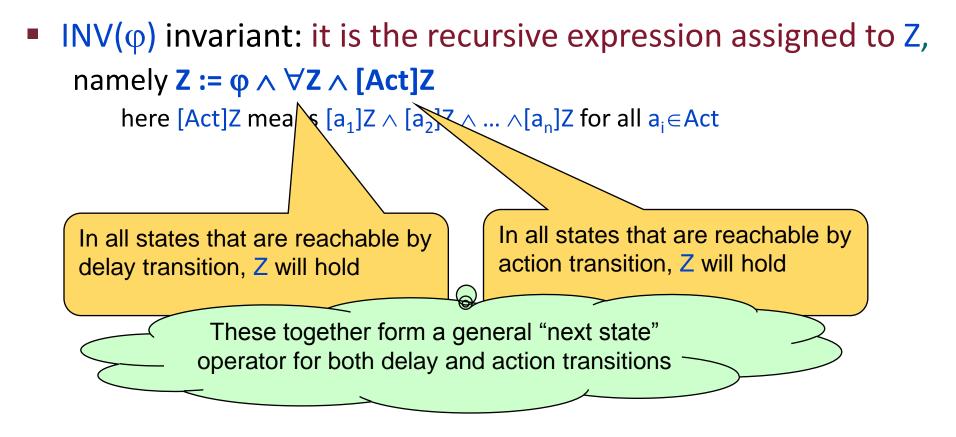
- Low level, simple operators
 - Existential and universal operators for transitions with actions or delay
 - "Base logic" (its role is similar to the mu-calculus)
 - Expressivity is high (since recursion is allowed, but this construct in itself is not easy to use and not intuitive)
- Using the Timed TL
 - Definition of composite / derived operators from the simple ones
 - These are closer to intuition and practical use:
 E.g., invariants, UNTIL, UNTIL, BEFORE t
 - Restrictions in model checkers (e.g., UPPAAL, KRONOS) in order to have more effective model checking algorithms

Useful expressions in the Timed TL

 INV(φ) invariant: it is the recursive expression assigned to Z, namely Z := φ ∧ ∀Z ∧ [Act]Z

here [Act]Z means $[a_1]Z \wedge [a_2]Z \wedge ... \wedge [a_n]Z$ for all $a_i \in Act$

Useful expressions in the Timed TL



If Z holds on M, where Z := $\phi \land \forall Z \land [Act]Z$, then ϕ is invariant on M

Useful expressions in the Timed TL

INV(φ) invariant: it is the recursive expression assigned to Z, namely Z := φ ∧ ∀Z ∧ [Act]Z

here [Act]Z means $[a_1]Z \wedge [a_2]Z \wedge ... \wedge [a_n]Z$ for all $a_i \in Act$

• ϕ_1 UNTIL ϕ_2 "weak until": it is Z, where $Z := \phi_2 \lor (\phi_1 \land \forall Z \land [Act]Z)$ φ₂ will not necessarily hold

- $\phi_1 \text{ UNTIL}_{<n} \phi_2 \equiv x \text{ in } ((\phi_1 \land x < n) \text{ UNTIL } \phi_2)$ here x is evaluated after reset, this way time n is relative
- ϕ BEFORE n = true UNTIL_{<n} ϕ
- Example: at(I_i) BEFORE t deadline property
 - It means reaching I_i location before t
 - \circ Here notation: $at(I_i)$ means that the automaton is at control location I_i

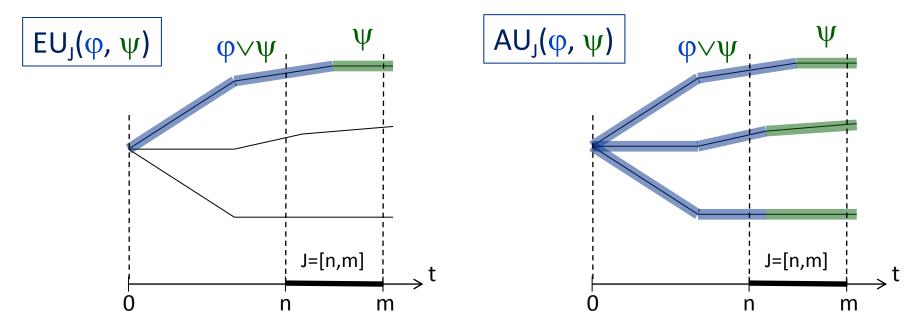
Simplification for effective evaluation

- Recap: The original syntax $\phi ::= c \mid P \mid \phi \land \phi \mid \phi \lor \phi \mid \exists \phi \mid \forall \phi \mid \langle a \rangle \phi \mid [a] \phi \mid x \text{ in } \phi \mid x + n \sim y + m \mid Z$
- To formalize safety and bounded liveness properties it is sufficient to restrict it as follows:
 - $\exists \phi$ omitted (existential quantifier on delays)
 - <a> omitted (existential quantifier on actions)
 - $c \lor \phi$ formula allowed only
 - $P \lor \phi$ formula allowed only

Invariants, UNTIL, UNTIL_{<n}, BEFORE t can be expressed

Timed CTL

- CTL variant with time: Timed Computational Tree Logic
- Characteristics:
 - Temporal operators are bound by time intervals
 - J = [n,m] bound, with open or closed intervals
 - Only the U "until" temporal operator is included in the syntax
 - With existential and universal quantifier on paths: EU and AU



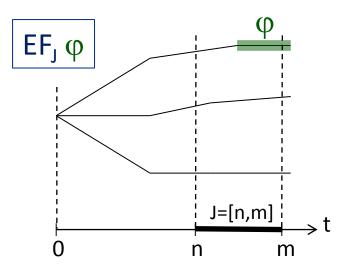
Formal syntax of TCTL

$\mathsf{TCTL} ::= \mathsf{P} \mid \mathsf{g} \mid \phi \land \psi \mid \neg \phi \mid \mathsf{EU}_{\mathsf{J}}(\phi, \psi) \mid \mathsf{AU}_{\mathsf{J}}(\phi, \psi)$

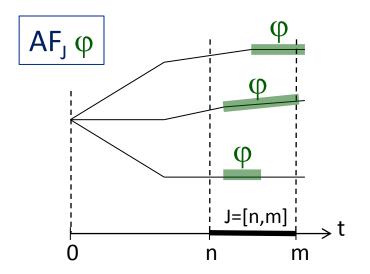
- Atomic propositions: P∈AP state labels
- Clock expressions: g∈B(C)
- Boolean operators in case of ϕ and ψ formula:
 - $\circ \phi \land \psi$
 - $\circ \neg \phi$
- Temporal operators in case of ϕ and ψ formula and J bounded time interval:
 - $EU_J(\phi, \psi)$ there exists a path on which the following holds: ψ holds in time interval J and until that $\phi \lor \psi$ holds
 - $\circ \ \mathsf{AU}_J(\phi,\psi) \text{ on all paths the following holds:} \\ \psi \ \text{holds in time interval J and until that } \phi \lor \psi \ \text{holds} \\ \text{here J is in form [n,m], (n,m], [n,m), (n,m), also } m = \infty \ \text{is possible}$

Defining derived temporal operators

$EF_{J} \phi = EU_{J}(true, \phi)$



 $AF_{J} \phi = AU_{J}(true, \phi)$

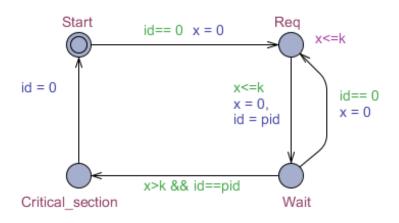


 $EG_{J} \phi = \neg AF_{J} \neg \phi$ $AG_{J} \phi = \neg EF_{J} \neg \phi$ In case of untimed properties: $J = [0,\infty)$

The model checker KRONOS

- Using the TA formalism
- TCTL temporal logic variant
 - $\exists <>$ (corresponds to EF)
 - ∀[] (corresponds to AG)
 - $\exists <>_{=n}$ (reachable in n time units)
 - $\forall []_{\leq n}$ (always reached in max. n time units)
- Interesting property that is often specified:
 - ∀[]∃<>₌₁ true
 - In each state the time is able to progress 1 time unit
 - It is not possible that "time is stopped"

Recap: Temporal operators in UPPAAL



Model of a mutual exclusion protocol (Fischer) for automata:

- Liveness without timing for automation PO:
 - After Wait, the critical section will eventually be reached on all paths:
 P0.Wait --> P0.Critical_section
- Timed liveness:
 - After Wait, the critical section will be reached on all paths in less that T time units:

PO.Wait --> (PO.Critical_section and x<T)

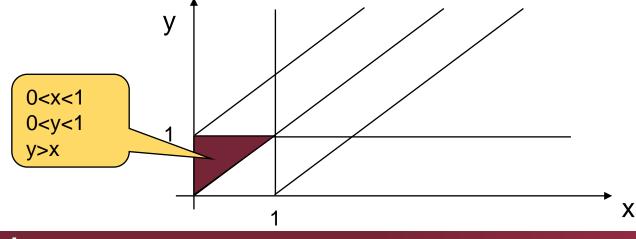
Note that the x clock is reset when entering Wait

Outlook: The basic idea of model checking

Identification of (time) regions,

where conditions are evaluated to the same truth value

- Conditions determined by invariants and guards in the TA
- There are many potential delays that make a condition true
- This way regions are formed on the clock variables
- \circ The truth of a Timed TL expressions is defined on the regions
- Semantics based model checking:
 - Can be solved as a constraint satisfaction problem
 - Is there a clock valuation with which ϕ holds?



Summary

- Motivation: Checking the models of real-time systems
- Models and mappings
 - Timed Transition System (TTS)
 - Timed Automata (TA) \rightarrow TTS
 - Network of TA \rightarrow TTS
- Interesting behavior in models of timed systems
 - Time convergence, timelock, zenoness (Zeno path)
- Formalizing properties
 - Timed TL
 - Timed CTL variants
- Model checking
 - Basic idea: regions are manipulated