
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Model checker tools

István Majzik
<majzik@mit.bme.hu>

1

Model checking as formal verification

Formal model:
KS, LTS, KTS, TA

Temporal logic
properties

Model checker

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Classic model checker tools
Tool Models Checked

property
Recommended use

UPPAAL
uppaal.org

Network of
Extended
Timed
Automata

Restricted CTL
(with clock
variables)

Verification of time
dependent behavior,
synchronous
communication

SPIN
spinroot.com

Process Meta
Language
(Promela)

LTL, labels,
property
automaton
(never claim)

Protocols and algorithms
of asynchronous
processes communicating
using message queues

NuSMV
nusmv.fbk.eu

Synchronous
and
asynchronous
finite state
machines

CTL, LTL Algorithms of processes
with shared variables,
synchronous hardware
components

3

The SPIN model checker and basics
of its Promela language

4

The modeling language in SPIN

Promela: Process Meta Language

 Processes: Units of concurrent execution

o Components in distributed algorithms or protocols

o Nondeterministic behavior can be specified

 Channels: For interactions among processes

o Asynchronous: FIFO message queue with given length

o Synchronous: rendezvous, handshake

 Variables

o Local variables in processes

o Global (shared) variables among processes

5

Data types

 Basic data types:
o bool or bit (1 bit), byte (8 bits),

short (16 bits, signed), int (32 bits, signed)
o Enumeration: mtype = {control, data, error}

 Channels
o chan name = [length] of {types} <- message: n-tuple

• Example: chan c = [5] of {bit, int}

o Buffered (asynchronous, FIFO), if length is not 0
o Not buffered (synchronous), if length is 0

 Structured types
o Arrays: int x[10]; chan c[3] = [6] of {bit, int, chan};
o Records: typedef MSG {bit control[5]; int data}
o Using records: MSG m, m.control[3], m.data

6

Processes
 Definition („process type”):

proctype procname (formal_parameters) {local_declarations; statements}

 Instantiation
o init process: default process that starts at the beginning
o active [num] definition before proctype: automatic start
o run statement: starting a process, e.g., run A()
o Process parameters: data of basic type, channel

 Statements
o Side-effect free expression is allowed
o Separation of statements with ; or -> (equivalent)

7

byte state = 2;
proctype A() {

(state == 1) -> state = 3

}

byte state = 2;
proctype A() {

state == 1;
state = 3

}

Execution of statements
 A statement is either executable or blocked

o Execution “gets stuck” on a blocked statement (until it becomes
executable)

o If a statement is executable then it can be executed

 Empty statement: skip
o Always executable

 Assignment: e.g., x=x-1
o Always executable

 Expression (condition)
o Executable, if its evaluation is not 0 (false)

o E.g., (a == b) is blocked if a!=b

 Unconditional jump: goto label to a statement with label:
o Always executable

 Timeout: timeout
o Executable, if there is no other executable statement

8

Selection
 Syntax:

 if

 :: statements

 …

 :: statements

 :: else statements

 fi

 Execution:
o The statements starting with :: are called “options”

o An option is executable if its first statement is executable

o Option with :: else is executable only if other option isn’t

o In case of many executable options: there is random selection

o Selection structure is executable if at least one option is
executable

9

if
 :: count = count+1
 :: count = count-1
fi

Repetition
 Syntax:

 do
 :: statements
 …
 :: statements
 :: else statements
 od

 Execution>
o The repetition is executable if at least one option is executable

(i.e., the first statement of at least one option is executable)
o In case of many executable options: there is random selection
o Option with :: else is executable only if other option isn’t

o After executing an option the repetition will start again
o Exit from the repetition: break or goto label

do
 :: count = count + 1;
 :: count = count - 1;
 :: (count == 0) -> break
od

10

Examples for repetition and selection

proctype counter() {

 do

 :: (count != 0) ->

 if

 :: count = count+1

 :: count = count-1

 fi

 :: (count == 0) -> break

 od

}

proctype Euclid(int x, y) {

 do

 :: (x > y) -> x = x - y

 :: (x < y) -> y = y - x

 :: (x == y) -> goto done

 od;

done:

 skip

}

11

Using channels
 Syntax of statements in case of channel q:

o Sending: q! e1, e2, …, en <- sending one message, variables or constants

o Receiving: q? e1, e2, …, en <- receiving one message, variables or constants

o Checking: empty(q), nempty(q), full(q), nfull(q), len(q)

 Execution on buffered channel (FIFO, queue length is >0)
o Sending is not executable if the channel is full, otherwise the sent message is

put to the tail of the channel queue

o Receiving is executable if the channel is not empty, and the specified
constants match the constants of the message at the head of the channel
• Constants are typically used to specify message type

o When receiving a message, its values v1, v2, … become the values of the
variables e1, e2, … specified in the receiving statement

 Execution on not buffered (synchronous) channel
o Sending and receiving are executable together if these are simultaneously

executable and the constants specified in their statements match

o The written values will become the values of the variables specified in the
receiving statement

12

Example for using a channel
chan Product[2] = [5] of {byte};

proctype Producer(byte pid) {
 do
 :: Product[pid] ! 1
 od
}

proctype Consumer() {
 byte x;
 do
 :: Product[0] ? x;
 :: Product[1] ? x
 od
}

init { run Producer(0); run Producer(1); run Consumer() }

13

Special expressions

 atomic keyword
o Sequence is to be executed as one indivisible unit

atomic { (state==1) -> state = state + 1 }

o Not interleaved with any other processes

o Atomicity is lost in case of blocked internal statement

 d_step keyword
o Similar to the atomic keyword

+ deterministic internal execution of statements
(even in case of random selection)

o Exiting or jumping to its internal statement is not
allowed

o Blocking on an internal statement results in error

14

Further features
 See at: http://spinroot.com/spin/Man/promela.html
 Specific receive and send statements

o q? args (normal)
o q?? args (receiving from anywhere in the channel)
o q? <args> (copying only)
o q?? <args> (copying only, from anywhere)
o q? [args] (polling)
o q?? [args] (poling, from anywhere)

 Special constructs
o for(…), do … od unless(…)
o select
o enabled
o eval()
o … and many more

15

General structure of a model

global_declarations;

proctype procname1 (formal_parameters1) {
 local_declarations1;

 statements1

};

 …

proctype procnamen (formal_parametersn) {

 local_declarationsn;

 statementsn

};

init { … run(procnamej) … run(procnamek) … }

never { … }

16

Mutual exclusion algorithm of Dekker

#define true 1

#define false 0

#define Aturn false

#define Bturn true

bool x, y, t;

proctype A() {

 x = true;

 t = Bturn;

 (y == false || t == Aturn);

 /* critical section */

 x = false

}

proctype B() {

 y = true;

 t = Aturn;

 (x == false || t == Bturn);

 /* critical section */

 y = false

}

init { run A(); run B()}

17

Specifying the properties to be verified

 Assertions: assert() condition, that shall be true
o E.g., assert(x!=y)

 Labels on statements (incl. repetition, selection)
o Acceptable end state: end prefix (e.g., end, end1, end_a)

o To be executed for progress: progress prefix
(i.e., infinite execution without progress can be checked)

 never claim
o Specific process, consists of conditions only

o If it matches with model execution then an error is detected

 LTL temporal logic (mapped to never claim)
o Syntax: ltl property_name {…}

• E.g., ltl my_property {p U q}

o Operators: U, W, F denoted by <>, G denoted by [], X is missing

18

Example for a never claim
 It is not allowed: Eventually, the property p becomes

continuously true (i.e., F G p is not allowed)
never { /* <>[]p */
 do
 :: true /* after an arbitrarily long prefix */
 :: p -> break /* p becomes true */
 od;
accept:
 do
 :: p /* and remains true forever after */
 od
}

 Specific label: accept prefix
o If in the never claim the accept prefix is reachable infinitely

often then an error is detected (match of the never claim)

p

true

accept p

20

Peterson mutual exclusion algorithm (assert)
bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // nr of processes in critical section

active [2] proctype user() // two processes with built-in identifier _pid
{
 assert(_pid == 0 || _pid == 1);
again:
 flag[_pid] = 1;
 turn = _pid;
 (flag[1-_pid] == 0 || turn == 1-_pid);

 ncrit++;
 assert(ncrit == 1);
 ncrit--;

 flag[_pid] = 0;
 goto again
}

21

flag0=1

turn=0

flag1 == 0 || turn == 1

flag1 != 0 && turn != 1

flag0=0

Critical
section

Peterson mutual exclusion algorithm (LTL)

bool turn, flag[2];
bool critical[2];

active [2] proctype user()
{
 assert(_pid == 0 || __pid == 1);
again:
 flag[_pid] = 1;
 turn = _pid;
 (flag[1 - _pid] == 0 || turn == 1 - _pid);

 critical[_pid] = 1;
 /* critical section */
 critical[_pid] = 0;

 flag[_pid] = 0;
 goto again;
}

LTL expressions:

[] (critical[0] || critical[1])

[] !(critical[0] && critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[0] ->
 (critical[0] U
 (!critical[0] &&
 ((!critical[0] &&
 !critical[1]) U critical[1]))))

[] (critical[1] ->
 (critical[1] U
 (!critical[1] &&
 ((!critical[1] &&
 !critical[0]) U critical[0]))))

22

The SPIN model checker

 Command line tool
o Several switches

 Eclipse RCP frame:
SpinRCP
o Model editor

o Syntax checker

o Automaton view

o Simulation (with MSC
visualization)

o Verification with
various parameters

23

SpinRCP complete view

24

The NuSMV model checker

25

The modeling language in NuSMV (1)
 Finite State machine (FSM) with variables

o Defining states and ”possible next state” relation among the states

o Variable with types: boolean, integer, enum, array

 Declaration of variables:

o VAR section in the model: identifier : type;

 Initial state of the FSM: Initial assignments

o ASSIGN section in the model: init(identifier) := simple_expression;

o Variable without assignment: input (any value assigned according to its type)

 Next state transition in the FSM: Changing the values of variables

o ASSIGN section: next(identifier) := next_expression;
the expression may refer to the value of variables in the current and in the
next state (the latter with the next() operator);
next_expression may contain set of values to choose from randomly

o ASSIGN section: identifier := simple_expression;
defines the value of the variable for all states

26

The modeling language in NuSMV (2)
 Conditional expressions

o if-then-else expression according to the usual (C-like) syntax

 condition ? expression1: expression2

o case expression: the first option with a true condition determines the
expression to be executed (error if there is no true option or TRUE option)

 case

 condition1 : expression1;

 ...

 conditionn : expressionn;

 TRUE: expressiondefault;

 esac

 Assignment to variables with constraints (logic expressions)

o INIT section: Any initial value which satisfies the constraint

o TRANS section: Current and next values (see the next() operator) shall satisfy
the constraint

27

Example model: Producer
MODULE main
 VAR
 request: boolean;
 state: {ready, busy};
 ASSIGN
 init(state) := ready;
 next(state) :=
 case
 state = ready & request: busy;
 state = busy: {ready, busy};
 TRUE: ready;
 esac;

28

The modeling language in NuSMV (3)

 if() condition

if (x<S & b>0)

 next(x) := x+1

 for(; ;) loop

for (j=1; j<=N-1; j=j+1)

 next(a[j] := a[j-1])

29

The property description in NuSMV

 Invariants
o INVAR section: logic expression for values of variables

 CTL expressions
o CTLSPEC or SPEC section, standard notation
o Logic expressions instead of atomic propositions
o E.g.: CTLSPEC AG(request −> AF(state = busy))

 LTL expressions
o LTLSPEC section, standard notation (implicit A)
o Logic expressions instead of atomic propositions
o E.g.: LTLSPEC G (y=4 -> X y=6)

 Useful: Alias (macro) definitions for propositions

o DEFINE section: alias := simple_expression

30

Modular structure

 Basic unit:
o MODULE name, with (optional) parameter

o E.g., MODULE user(semaphore)

 Processes instantiated from modules
o process keyword in the VAR section

o E.g.: proc1 : process user(semaphore);

 proc2 : process user(semaphore);

o (This possibility may not be supported in the future)

 Specifying fair behavior
o FAIRNESS section: running keyword,

or a CTL state expression that shall hold infinitely often

o E.g.: FAIRNESS running (process runs infinitely often)

31

Semantics: Synchronous or asynchronous

 Synchronous execution

o Instantiation of modules

o In a ”step” each module performs a state transition
(assigning new values to some variables)

o Preferred for verification of hardware component

 Asynchronous execution

o Instantiation of modules with the process keyword in the
main module

o In a ”step” only one randomly selected module performs a
state transition (assigning new values to some variables)

o Preferred for verification of distributed systems that use
shared variables

32

Example: Synchronous or asynchronous system

MODULE cell(input)

 VAR

 val : {red, green, blue};

 ASSIGN

 next(val) := {input};

MODULE main

 VAR

 c1 : cell(c3.val);

 c2 : cell(c1.val);

 c3 : cell(c2.val);

MODULE cell(input)

 VAR

 val : {red, green, blue};

 ASSIGN

 next(val) := {input};

MODULE main

 VAR

 c1 : process cell(c3.val);

 c2 : process cell(c1.val);

 c3 : process cell(c2.val);

33

Example: Asynchronous system
MODULE main

 VAR

 semaphore : boolean;

 proc1 : process user(semaphore);

 proc2 : process user(semaphore);

 ASSIGN

 init(semaphore) := FALSE;

CTLSPEC AG ! (proc1.state = critical &
 proc2.state = critical)

CTLSPEC AG (proc1.state = entering ->
 AF proc1.state = critical)

LTLSPEC G ! (proc1.state = critical &
 proc2.state = critical)

LTLSPEC G (proc1.state = entering ->
 F proc1.state = critical)

MODULE user(semaphore)

 VAR

 state : {idle, entering, critical, exiting};

 ASSIGN

 init(state) := idle;

 next(state) :=

 case

 state = idle : {idle, entering};

 state = entering & !semaphore : critical;

 state = critical : {critical, exiting};

 state = exiting : idle;

 TRUE : state;

 esac;

 next(semaphore) :=

 case

 state = entering : TRUE;

 state = exiting : FALSE;

 TRUE : semaphore;

 esac;

34

The NuSMV model checker

 Command line version
o Execution: nusmv model

o Textual output

o Counterexample is also textual (value of variables)

 Eclipse framework: NuSeen
o Xtext based model editor

o Tabular visualization of counterexamples

o Dependency graphs of variables

35

