

Dániel Darvas (CERN / BME)

PLCverif:

Model checking PLC programs

Formal Methods course, BME

22/02/2017

Contains joint work with B. Fernández Adiego, E. Blanco Viñuela,

S. Bliudze, J.O. Blech, J-C. Tournier, T. Bartha, A. Vörös, R. Speroni, I. Majzik

CERN European Org. for Nuclear Research

− Largest particle physics laboratory

− Accelerator complex, incl. Large Hadron Collider (LHC)
• Proton beams with high energies

© CERN

PLCs

− Programmable Logic Controllers:

robust industrial computers, specially

designed for process control tasks

− 1000+ PLCs at CERN
• Including many critical systems

© Siemens AG 2014,

All rights reserved

Cryogenics Vacuum Detector

control

PLC programming

− 5 standard PLC programming languages
• Base building block: function block

FUNCTION_BLOCK Test

 VAR_INPUT

 in1: Bool;

 END_VAR

 VAR_OUTPUT

 out1: Bool;

 END_VAR

BEGIN

 out1:= NOT in1;

END_FUNCTION_BLOCK

DATA_BLOCK inst Test

BEGIN

END_DATA_BLOCK

final class Test {

 public boolean in1 = false;

 public boolean out1 = false;

 public void execute (boolean in1) {

 this.in1 = in1;

 execute();

 }

 public void execute () {

 out1 = !in1;

 }

}

public Test inst = new Test();

Siemens SCL language ”Equivalent” Java code

Test
in1 out1

inst

Motivation for formal verification

− PLCs are often not safety-critical

but

− Expensive equipment is operated by PLCs

− Update of PLC programs difficult

− The cost of downtime is high

© CERN

Using formal methods

− Formal verification (model checking) may complement

testing to find more complex faults

but

− Model checking has to be accessible to the PLC

developers

− Required effort has to be in balance with the benefits
• The method has to be adapted to the available knowledge

• Formal details should be hidden

• Recurring tasks should be automated or facilitated

Model checking of PLC programs

Challenges

− Formal models
• Creation of formal models require lots of effort and knowledge

− Formal requirements
• Formalizing requirements in e.g. CTL/LTL is difficult, they are

inconvenient and ambiguous without strong knowledge

− Model size and model checking performance
• “Naïve modelling” often leads to complex, large models

requiring excessive resources to verify

• Optimization of models is difficult and tedious

− Model checker development
• CERN is not a computer science research centre, development

of a custom model checker would need too much effort

Can we use external tools?

− General-purpose formal modelling and verification

tools (e.g. UPPAAL, NuSMV)
• Usage is difficult for control engineers

• Too much repetitive tasks in modelling

− Software model checkers (e.g. CBMC)
• PLCs use special programming languages and execution

scheme

− PLC-specific model checkers
• No industrial solution yet

• Some academic tools (e.g. Arcade.PLC)

Formal modelling

− Formal models (~automata) automatically generated

from the source code of the PLC programs (via AST)

IF c > 100 THEN

 s1;

ELSE

 s2;

END_IF;

s0

s2 s1

[c>100] [NOT c>100]

Formalizing the requirements

− Use of CTL/LTL is too difficult for most control engineers

− Typical requirements were captured

as textual requirement patterns
• Placeholders to be filled by the users (using simple expressions)

If α and β are true, then α shall stay true until β

becomes true.

𝑨𝑮 𝜶 ∧ 𝜷 → 𝑨 𝜶 𝑼 ¬𝜷

Model size and performance

− Size of the generated formal model is often huge,

verification often impossible (memory bottleneck)

− Automated reductions reduce the resource needs

• General-purpose, structural reductions

• Domain-specific reductions

• Exploit the extra knowledge about the domain, the execution

schema, etc.

• Requirement-specific reductions

• Removes the parts of the model which do not influence the

satisfaction of the current requirement

External model checkers

− Development of a custom model checker would need

excessive effort

− Instead, we reuse (wrap) existing general-purpose

model checkers as generic verification engines
• UPPAAL

• NuSMV / nuXmv

• ITS

• …

− Input (model+requirement) mapping +

Output (counterexample) mapping needed

Intermediate model

− Simple, automata-based formalism

− Describes the behaviour of the PLC program

− Advantages:
• Helps to use model reductions (on the IM)

• Helps to use various model checkers with different syntaxes

• Simplifies (decouples) the PLC program Model checker

model transformation, thus reduces the risk of faults

PLC

program

Intermediate

model

Formal model of

model checker

More info: B. Fernández et al. Bringing automated model checking to PLC program development - A CERN case

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

Overview of the workflow

Intermediate

model

Formal

requirement

Model

checker

Satisfied Not satisfied

Counter-

example

PLC

program

Requirement

patterns

Verification

report

Reductions

Based on the

implementation

User-friendly requirem’t

specification

Heavily automated

reductions

Replaceable external

model checker

Self-contained report

with counterexample

Overview of the workflow

Intermediate

model

Formal

requirement

Model

checker

Satisfied Not satisfied

Counter-

example

PLC

program

Requirement

patterns

Verification

report

Reductions

Based on the

implementation

User-friendly requirem’t

specification

Heavily automated

reductions

Replaceable external

model checker

Self-contained report

with counterexample

PLC-specific

verification tool

Tool hiding the

formal details

More info: B. Fernández et al. Bringing automated model checking to PLC program development - A CERN case

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

The PLCverif tool

Eclipse-based editor for PLC programs

The PLCverif tool

Defining verification cases (requirement, fine-tuning, etc.)

No model checker-related things or temporal logic expressions

The PLCverif tool

Click-button verification, verification report with the

analysed counterexample

Example verification metrics

Source

code lines

Unreduced

model

Reduced

model

Verification

time (NuSMV)

(1) 12 24 24 0.04 s

(2) 1000 3.8 × 10242 2.2 × 108 0.24 s

(3) 1000 3.8 × 10242 5.8 × 106 0.23 s

(4) 17,700 1032446 7.9 × 1035 21.7 s

(5) 10,000 10978 1.6 × 1084 ~7 min

Verification times measured on: Intel i7-3770, 8 GB RAM, Win 7 x64, Java 8

 NuSMV 2.6.0 (physical PC)

Each line represents the verification of a PLC program with a specific requirement.

Scaling

− Providing acceptable performance is a continuous

challenge

− However, many successful industrial applications,

e.g.:

• Module library of CERN’s in-house PLC framework (UNICOS)

• ~1000 lines of code

• Unreduced potential state space: up to ~10250

• Verification time: typically in the range of seconds

• Safety logic of magnet testing facility (see later)

• ~10,000 lines of code

• Unreduced potential state space: up to ~101000

• Verification time: in the range of 1..10 minutes

Case study:

SM18 magnet testing facility

SM18 PLCSE safety controllers

Goal: ensuring safety by allowing/forbidding tests

Core:

© CERN

Safety-critical,

can be dangerous:

14 kA, liquid He,

–271°C, vacuum

More info: D. Darvas, I. Majzik, E. Blanco. Formal verification of safety PLC based control software.

In Integrated Formal Methods, LNCS 9681, pp. 508-522. Springer, 2016. doi: 10.1007/978-3-319-33693-0_32

Challenges in the verification

− Complex, semi-formal (ambiguous) requirements

Semi-formal specification

− Allowed tests described in a tabular form

• If SelTest=1 and Voltage>100 and not Overh and CryoOk,

then TestEnabled shall be true, SpecialTest shall be true.

− Not bad, but ambiguous
• Colours have undefined additional meanings

• Some ambiguous values in cells, e.g. “1 / NA / NA / 0”

In
p
u
t

Selected test 1 2

Voltage >100 V >50 V

Overheating FALSE don’t care

Cryo OK TRUE TRUE

O
u

tp
u
t

TestEnabled TRUE TRUE

SpecialTest TRUE FALSE

AG(PLC_END → ((SelectedTest=1 ∧ Voltage>100 ∧

¬Overheating ∧ CryoOk) → (TestEnabled ∧ SpecialTest)))

From M. Charrondiere

Challenges in the verification

− Complex, semi-formal (ambiguous) requirements

− ‘LD’ programming language
• Due to development restrictions for safety PLC programs

• Has to be exported to ‘STL’ language first

• Semantics of ‘STL’ is not precisely defined

Ladder Diagram (LD) example

Excerpt from the work of R. Speroni

Siemens Statement List (STL) example

NETWORK
TITLE =POWER CD

 A(;
 L #SEL_ACTIVE_BENCH;
 L 1;
 ==I ;
) ;
 A(;
 O(;
 L #SEL_TYPE_TEST_X1;
 L 1;
 ==I ;
) ;
 O(;
 L #SEL_TYPE_TEST_X1;
 L 3;
 ==I ;
) ;
) ;
 A #AI_X1_I_CUM;
 A #DI_X1_I_CUM;
 A #CTH_X1_I_CUM;

 O ;
 A(;
 L #SEL_ACTIVE_BENCH;
 L 2;
 ==I ;
) ;
 A(;
 O(;
 L #SEL_TYPE_TEST_X2;
 L 1;
 ==I ;
) ;
 O(;
 L #SEL_TYPE_TEST_X2;
 L 3;
 ==I ;
) ;
) ;
 A #AI_X2_I_CUM;
 A #DI_X2_I_CUM;
 A #CTH_X2_I_CUM;
 = #DO_OK_CD_POWER;

Challenges in the verification

− Complex, semi-formal (ambiguous) requirements

− ‘LD’ programming language
• Due to development restrictions for safety PLC programs

• Has to be exported to ‘STL’ language first

• Semantics of ‘STL’ is not precisely defined

− Complex safety logic
• Many inputs and outputs

Problems found (before putting in production!)

Requirement misunderstanding

− Recognised while specifying requirements formally

Functionality problems

− “The [magnet] test should start, but it doesn’t.”

Safety problems

− “The [magnet] test should NOT start, but it does.”

Problems found

In total 14 issues found

 4 requirement misunderstandings

 6 problems could not be found

 using our typical testing methods

Summary

Where are we now?

− Model checking: more and more used for real cases
• Sometimes non-expert users use PLCverif autonomously

• Integration into the development process is in progress

− Several successful case studies
• Model checking revealed interesting and potentially critical

problems

• Counterexample is a huge advantage

− Improvements are always possible
• New reduction methods

• Support for new model checkers

• Support for additional PLC languages

For more information…

− Project website (with publication list)

http://cern.ch/project-plc-formalmethods/

− PLCverif tool’s website

http://cern.ch/plcverif

− CERN website – http://home.cern

http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/plcverif
http://home.cern/

Model checking at CERN

− D. Darvas et al. Formal verification of complex properties on PLC
programs. Formal Techniques for Distributed Objects, Components, and
Systems (LNCS 8461), pp. 284-299, Springer, 2014.

− B. Fernández et al. Bringing automated model checking to PLC
program development – A CERN case study. Proc. of the 12th Int.
Workshop on Discrete Event Systems, pp. 394-399, 2014.

− D. Darvas et al. PLCverif: A tool to verify PLC programs based on
model checking techniques. Proc. of the 15th Int. Conf. on Accelerator &
Large Experimental Physics Control Systems, pp. 911-914, JaCoW, 2015.
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092

− B. Fernández et al. Applying model checking to industrial-sized PLC
programs. IEEE Transactions on Industrial Informatics, 11(6):1400-1410,
2015. http://doi.org/10.1109/TII.2015.2489184

− D. Darvas et al. Formal verification of safety PLC based control
software. Integrated Formal Methods (LNCS 9681), pp. 508-522,
Springer, 2016. http://doi.org/10.1007/978-3-319-33693-0_32

http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.1109/TII.2015.2489184
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32

Formal specification at CERN

− D. Darvas et al. Requirements towards a formal specification

language for PLCs. 2014. http://doi.org/10.5281/zenodo.14907

− D. Darvas et al. A formal specification method for PLC-based

applications. Proc. of the 15th Int. Conf. on Accelerator & Large

Experimental Physics Control Systems, pp. 907-910, JaCoW, 2015.

http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091

− D. Darvas et al. Syntax and semantics of PLCspecif. CERN Report,

EDMS 1523877, 2015. https://edms.cern.ch/document/1523877

− D. Darvas et al. Formal verification of safety PLC based control

software. Integrated Formal Methods (LNCS 9681), pp. 508-522,

Springer, 2016. http://doi.org/10.1007/978-3-319-33693-0_32

http://dx.doi.org/10.5281/zenodo.14907
http://dx.doi.org/10.5281/zenodo.14907
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
https://edms.cern.ch/document/1523877
https://edms.cern.ch/document/1523877
https://edms.cern.ch/document/1523877
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32

