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CERN European Org. for Nuclear Research 

− Largest particle physics laboratory 

− Accelerator complex, incl. Large Hadron Collider (LHC) 
• Proton beams with high energies 
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PLCs 

 

− Programmable Logic Controllers: 

robust industrial computers, specially  

designed for process control tasks 
 

− 1000+ PLCs at CERN 
• Including many critical systems 
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PLC programming 

− 5 standard PLC programming languages 
• Base building block: function block 

FUNCTION_BLOCK Test 

 VAR_INPUT 

  in1: Bool; 

 END_VAR 

 VAR_OUTPUT 

  out1: Bool; 

 END_VAR 

BEGIN 

 out1:= NOT in1; 

END_FUNCTION_BLOCK 

 

DATA_BLOCK    inst   Test 

BEGIN 

END_DATA_BLOCK 

final class Test { 

 public boolean in1 = false; 

 public boolean out1 = false; 

  

 public void execute (boolean in1) { 

  this.in1 = in1; 

  execute(); 

 } 

 public void execute () { 

  out1 = !in1; 

 } 

} 

 

public Test inst = new Test(); 

Siemens SCL language ”Equivalent” Java code 

Test 
in1 out1 

inst 



Motivation for formal verification 

 

− PLCs are often not safety-critical 

 

but 

 

− Expensive equipment is operated by PLCs 

− Update of PLC programs difficult 

− The cost of downtime is high 
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Using formal methods 

− Formal verification (model checking) may complement 

testing to find more complex faults 

 

but 

 

− Model checking has to be accessible to the PLC 

developers 
 

− Required effort has to be in balance with the benefits 
• The method has to be adapted to the available knowledge 

• Formal details should be hidden 

• Recurring tasks should be automated or facilitated 



Model checking of PLC programs 



Challenges 

− Formal models 
• Creation of formal models require lots of effort and knowledge 

 

− Formal requirements 
• Formalizing requirements in e.g. CTL/LTL is difficult, they are 

inconvenient and ambiguous without strong knowledge 

 

− Model size and model checking performance 
• “Naïve modelling” often leads to complex, large models 

requiring excessive resources to verify 

• Optimization of models is difficult and tedious 

 

− Model checker development 
• CERN is not a computer science research centre, development 

of a custom model checker would need too much effort 



Can we use external tools? 

− General-purpose formal modelling and verification 

tools (e.g. UPPAAL, NuSMV) 
• Usage is difficult for control engineers 

• Too much repetitive tasks in modelling 

 

− Software model checkers (e.g. CBMC) 
• PLCs use special programming languages and execution 

scheme 

 

− PLC-specific model checkers 
• No industrial solution yet 

• Some academic tools (e.g. Arcade.PLC) 

 



Formal modelling 

 

− Formal models (~automata) automatically generated 

from the source code of the PLC programs (via AST) 

IF c > 100 THEN 

 s1; 

ELSE 

 s2; 

END_IF; 

s0 

s2 s1 

[c>100] [NOT c>100] 



Formalizing the requirements 

− Use of CTL/LTL is too difficult for most control engineers 

 

− Typical requirements were captured  

as textual requirement patterns 
• Placeholders to be filled by the users (using simple expressions) 

 

If α and β are true, then α shall stay true until β 

becomes true.  

𝑨𝑮 𝜶 ∧ 𝜷 → 𝑨 𝜶 𝑼 ¬𝜷  



Model size and performance 

− Size of the generated formal model is often huge, 

verification often impossible (memory bottleneck) 

 

− Automated reductions reduce the resource needs 
 

• General-purpose, structural reductions 

 

• Domain-specific reductions 

• Exploit the extra knowledge about the domain, the execution 

schema, etc. 

 

• Requirement-specific reductions 

• Removes the parts of the model which do not influence the 

satisfaction of the current requirement 



External model checkers 

− Development of a custom model checker would need 

excessive effort 

 

− Instead, we reuse (wrap) existing general-purpose 

model checkers as generic verification engines 
• UPPAAL 

• NuSMV / nuXmv 

• ITS 

• … 

 

− Input (model+requirement) mapping + 

Output (counterexample) mapping needed 



Intermediate model 

− Simple, automata-based formalism 

− Describes the behaviour of the PLC program 

 

 

 

 

− Advantages: 
• Helps to use model reductions (on the IM) 

• Helps to use various model checkers with different syntaxes 

• Simplifies (decouples) the PLC program  Model checker 

model transformation, thus reduces the risk of faults 

 

PLC 

program 

Intermediate 

model 

Formal model of 

model checker 



More info: B. Fernández et al. Bringing automated model checking to PLC program development - A CERN case 

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051 
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More info: B. Fernández et al. Bringing automated model checking to PLC program development - A CERN case 

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051 



The PLCverif tool 

Eclipse-based editor for PLC programs 



The PLCverif tool 

Defining verification cases (requirement, fine-tuning, etc.) 

No model checker-related things or temporal logic expressions 



The PLCverif tool 

Click-button verification, verification report with the 

analysed counterexample 



Example verification metrics 

Source 

code lines 

Unreduced 

model 

Reduced 

model 

Verification 

time (NuSMV) 

(1) 12 24 24 0.04 s 

(2) 1000 3.8 × 10242 2.2 × 108 0.24 s 

(3) 1000 3.8 × 10242 5.8 × 106 0.23 s 

(4) 17,700 1032446 7.9 × 1035 21.7 s 

(5) 10,000 10978 1.6 × 1084 ~7 min 

Verification times measured on: Intel i7-3770, 8 GB RAM, Win 7 x64, Java 8  

 NuSMV 2.6.0 (physical PC) 

Each line represents the verification of a PLC program with a specific requirement. 



Scaling 

− Providing acceptable performance is a continuous 

challenge 

− However, many successful industrial applications, 

e.g.: 
 

• Module library of CERN’s in-house PLC framework (UNICOS) 

• ~1000 lines of code 

• Unreduced potential state space: up to ~10250 

• Verification time: typically in the range of seconds 

 

• Safety logic of magnet testing facility (see later) 

• ~10,000 lines of code 

• Unreduced potential state space: up to ~101000 

• Verification time: in the range of 1..10 minutes 

 



Case study: 

SM18 magnet testing facility 



SM18 PLCSE safety controllers 

Goal: ensuring safety by allowing/forbidding tests 

Core: 

© CERN 

Safety-critical, 

can be dangerous: 

14 kA, liquid He, 

–271°C, vacuum 

More info: D. Darvas, I. Majzik, E. Blanco. Formal verification of safety PLC based control software.  

In Integrated Formal Methods, LNCS 9681, pp. 508-522. Springer, 2016. doi: 10.1007/978-3-319-33693-0_32 



Challenges in the verification 

 

− Complex, semi-formal (ambiguous) requirements 

 

 



Semi-formal specification 

− Allowed tests described in a tabular form 

 

 

 

 

 

 
• If SelTest=1 and Voltage>100 and not Overh and CryoOk, 

then TestEnabled shall be true, SpecialTest shall be true. 

 

− Not bad, but ambiguous 
• Colours have undefined additional meanings 

• Some ambiguous values in cells, e.g. “1 / NA / NA / 0” 

In
p
u
t 

Selected test 1 2 

Voltage >100 V >50 V 

Overheating FALSE don’t care 

Cryo OK TRUE TRUE 

O
u

tp
u
t 

TestEnabled TRUE TRUE 

SpecialTest TRUE FALSE 

AG(PLC_END → ((SelectedTest=1 ∧ Voltage>100 ∧ 

¬Overheating ∧ CryoOk) → (TestEnabled ∧ SpecialTest))) 



From M. Charrondiere 



Challenges in the verification 

 

− Complex, semi-formal (ambiguous) requirements 

 

− ‘LD’ programming language 
• Due to development restrictions for safety PLC programs 

• Has to be exported to ‘STL’ language first 

• Semantics of ‘STL’ is not precisely defined 

 



Ladder Diagram (LD) example 

Excerpt from the work of R. Speroni 



Siemens Statement List (STL) example 

NETWORK 
TITLE =POWER CD 
 
      A(    ;  
      L     #SEL_ACTIVE_BENCH;  
      L     1;  
      ==I   ;  
      )     ;  
      A(    ;  
      O(    ;  
      L     #SEL_TYPE_TEST_X1;  
      L     1;  
      ==I   ;  
      )     ;  
      O(    ;  
      L     #SEL_TYPE_TEST_X1;  
      L     3;  
      ==I   ;  
      )     ;  
      )     ;  
      A     #AI_X1_I_CUM;  
      A     #DI_X1_I_CUM;  
      A     #CTH_X1_I_CUM;  

      O     ;  
      A(    ;  
      L     #SEL_ACTIVE_BENCH;  
      L     2;  
      ==I   ;  
      )     ;  
      A(    ;  
      O(    ;  
      L     #SEL_TYPE_TEST_X2;  
      L     1;  
      ==I   ;  
      )     ;  
      O(    ;  
      L     #SEL_TYPE_TEST_X2;  
      L     3;  
      ==I   ;  
      )     ;  
      )     ;  
      A     #AI_X2_I_CUM;  
      A     #DI_X2_I_CUM;  
      A     #CTH_X2_I_CUM;  
      =     #DO_OK_CD_POWER; 



Challenges in the verification 

 

− Complex, semi-formal (ambiguous) requirements 

 

− ‘LD’ programming language 
• Due to development restrictions for safety PLC programs 

• Has to be exported to ‘STL’ language first 

• Semantics of ‘STL’ is not precisely defined 

 

− Complex safety logic 
• Many inputs and outputs 

 





Problems found (before putting in production!) 

 

Requirement misunderstanding 

− Recognised while specifying requirements formally 

 

Functionality problems 

− “The [magnet] test should start, but it doesn’t.” 

 

Safety problems 

− “The [magnet] test should NOT start, but it does.” 

 

 



Problems found 

 

In total 14 issues found 

 

 4 requirement misunderstandings 

 6 problems could not be found 

  using our typical testing methods 

 

 

 



Summary 

Where are we now? 

− Model checking: more and more used for real cases 
• Sometimes non-expert users use PLCverif autonomously 

• Integration into the development process is in progress 

 

− Several successful case studies 
• Model checking revealed interesting and potentially critical 

problems 

• Counterexample is a huge advantage 

 

− Improvements are always possible 
• New reduction methods 

• Support for new model checkers 

• Support for additional PLC languages 

 

 





For more information… 

 

− Project website (with publication list) 

http://cern.ch/project-plc-formalmethods/  

− PLCverif tool’s website 

http://cern.ch/plcverif  

− CERN website – http://home.cern  

  

http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/project-plc-formalmethods/
http://cern.ch/plcverif
http://home.cern/
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programs. IEEE Transactions on Industrial Informatics, 11(6):1400-1410, 
2015. http://doi.org/10.1109/TII.2015.2489184  

− D. Darvas et al. Formal verification of safety PLC based control 
software. Integrated Formal Methods (LNCS 9681), pp. 508-522, 
Springer, 2016. http://doi.org/10.1007/978-3-319-33693-0_32  

http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://doi.org/10.1109/TII.2015.2489184
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32
http://doi.org/10.1007/978-3-319-33693-0_32


Formal specification at CERN 
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