
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification of the Requirements
Specification

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Overview

 Inputs and outputs of the phase

 Preparing the requirements specification
o Formal languages

o Semi-formal and structured methods

o Example: SysML

 Verification tasks
o General aspects and verification techniques

o Verifying completeness and consistency

 Managing requirements
o Traceability

o Basic tasks and tool support

2

Inputs and outputs of the phase

Inputs and outputs

Related: Software Quality Assurance Plan

and Software Verification Plan

4

Inputs and outputs of the phase

Specifying software

requirements

System requirements

specification

Software requirements

specification (SRS)

System architecture

design

Software quality

assurance plan

Software requirements

test specification

Software requirements

verification report

“Local”

verification

Plan for

validation

testing

5

Software Quality Assurance Plan

 Goals:
o Preventing systematic faults and controlling residual faults
o Determining the required technical and control activities

 Main aspects to be included:
o Activities, their input and output criteria in the lifecycle
o Quantitative quality expectations (e.g., ISO/IEC 9126)
o Specification of it own review and maintenance

 Methods for checking external suppliers
o Compliance of the QA Plan of the supplier
o Verification of external software components

 Issue tracking
o Documentation and feedback mechanisms
o Analysis of issues (root causes)
o Diagnosis and maintenance/repair activities and techniques
o Verification and validation of corrections
o Fault avoidance

6

Software Verification Plan

 Often a separate plan (especially in safety-critical systems)

 Planning the verification activities
o Planning the techniques and measures (from the development standard)

o Determining acceptance criteria

 Overall aspects of verification:
o “Local” checking of the given development step: Completeness, consistency

o Conformance checking: W.r.t. the output of previous phases

 Details:
o Participants roles and responsibilities

o Tools (e.g., test equipment)

o Evaluation of verification results (acceptance criteria)

• Checking the required test coverage

• Evaluation of quality requirements

7

Software requirements specification - Terminology

 Requirement
o Incoming need, vision, expectation

• From the future users

• From stakeholders (management, operator, authority, ...)

o Basis for validation

 Requirements specification
o Requirements in converted form, for the designers

• Result of requirement analysis

• Abstraction, structuring, filtering applied

o Several types of requirements
• Property specification, behavior specification, …

• Later: architecture specification (/design), module specification, …

o Basis for verification

9

Preparing the requirements specification

Formal languages

Semi-formal and structured methods

Example: SysML

11

Approaches for specifying requirements

 Contents of the requirements specification
o Functional requirements

o Extra-functional requirements

 Natural language based specifications
o Problems with unambiguity, verifiability

 Possible solutions:
o Using strict specification language (e.g., formal, or semi-formal)

o Using verified “specification patterns” (e.g., for safe behavior)

o Systematic verification after the requirement specification phase

 Example: Solutions proposed by EN 50128
o Formal methods (VDM, Z, B, TL, PN, ...)

o Semi-formal methods (diagram based techniques, SysML)

o Structured methods (JSD, SADT, SSADM, …)

o Natural language based description (explanation) is mandatory

12

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

13

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

Mathematical model:
• Elements in the system (set-theoretic

structures like sets, subsets, relations)
• Functions, operations, events (with

pre- and post-conditions, invariants)

Example: Specification of an access control system (in Event-B):

Persons: prs 0, p prs (set)

Buildings: bld 0, b bld (set)

Authorization: aut prs bld (binary relation)

Situation: sit prs bld (complete function)

Invariant: sit aut

An event (change of situation):
 pass = ANY p,b WHERE (p,b)aut sit(p)b

 THEN sit(p):=b END

14

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

Abstract algebra and
category theory
• Abstract data types: values,

operations, properties
• First order logic is typical

Abstract data types: sorts (set of values),
operations, properties as equiations

Type Boolean is

 sorts Bool

 opns

 false, true : -> Bool

 not : Bool -> Bool

 and : Bool, Bool -> Bool

 eqns

 forall x, y: Bool

 ofsort Bool

 not(true) = false;

 not(false) = true;

 x and true = x;

15

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

Example: Process algebra language (CCS):

Sender = msg.ack.Sender

Receiver = msg.ack.Receiver

Chan = msgin.msgout.Chan + ackin.ackout.Chan

Proc = Sender[msgin/msg,ackout/ack] | Chan |

 Receiver[msgout/msg, ackin/ack]

 Sender

msg ack

 Receiver

msg ack

msgin ackout Chan msgout ackin

• Processes: Sequential execution of
statements

• Operations among the processes
(synchronization, communication)

16

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

• Formal mathematical logic (first order
or higher order logic)

• Temporal logics (with temporal
operators like “future”, “next time”,
“until”, “before”)

17

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

Example for a non-constructive proof (in mathematics)
• The existence of an artifact with a given property can be proven

without giving exactly what is that artifact
• Example: There exist a,b Q such that ab Q

• Properties with non-constructive proof are not feasible for
software specification, this way restrictions are needed that
guarantee the synthesis of functions

Constructive logic systems (computable
functions): Proof of a property of a
function at the same time provides a
construction (implementation)

18

Overview of the types of formal languages

 Model-oriented languages (VDM, Z, B, …)

 Algebraic languages (ADT, OBJ, …)

 Process description languages (CSP, CCS, …)

 Logic languages (HOL, CTL*, …)

 Constructive languages (NUPRL, …)

 Hybrid or wide spectrum languages
 (CPN, E-LOTOS, …)

• Properties and advantages of different
formalisms are combined, e.g.,

• LOTOS: process algebra + ADT
• CPN: Petri-nets + data manipulation (ML)

19

Semi-formal languages: Examples

 Description of the structure:

o (Functional) block diagrams

 Description of data flow:

o Data flow diagrams, data flow networks

o (Message) sequence diagrams

 Description of the control flow:

o Control flow diagram, state machine, statechart

 Description of logic conditions:

o Truth tables

o Constraint languages (e.g., OCL with structure)

20

Structured methodologies: Historical examples

 Jackson System Development (JSD)
o Entity structure: Entities + actions (ordering) + processes

o Network: Communicating sequential processes

 Real-time Yourdon (Ward-Mellor)
o Basic: Environment (input events) + behavior (response)

o Construction: Processes (+ processors)

 SSADM
o Data model (entity relationship diagram)

o Data flow diagram (processes, data storage)

o Entity diagram (life history)

o Entity effects

 Structured Analysis and Design Technique (SADT)
o Activity-factor diagram: tasks + relations;

input, control, resource, output

 ROOM: Real-Time Object-Oriented Modeling

22

Semi-formal requirements specification: SysML

 Systems Modeling Language
o UML subset and extensions for system modeling

o Novelties: Requirement and Parametric diagram

28

Requirement diagram

 Requirements (textual) with identifier are model elements
o <<requirement>> stereotype

o Id (identifier) and text (description) fields

o User-specified attributes: e.g., type, source, risk, ...

o Tabular form is also supported

 Requirements can be grouped into hierarchic packages
o Functional, performance, etc. categories

 Refinement among requirements (~ subclass), composition

 Relations can be used (e.g., inserted as structured comments):
o Copy: between requirements (master – slave)

o Trace: between requirements (client – supplier)

o DeriveReqt: between requirements (source – derived)

o Refine: between requirements and design elements

o Satisfy: between requirements and design or implementation elements

o Verify: between requirements and test elements

29

Example requirements diagram: Structure

30

Requirements diagram: Decisions

 Special comments (with predefined stereotype) can
be assigned to any model element:
<<problem>>: Problem or proposal that needs decision
<<rationale>>: Rationale, solution, explanation

31

Example requirements diagram: Relations

32

Block diagram

 Block: Element of the structure (black / white box)
o Component (not only software)

o In SysML: Based on UML 2.0 classes

 Block definition diagram: Types of blocks

 Internal block diagram: Concrete roles of block types

33

Parametric diagram

 Goal: Verifiable quantitative requirements
(constraints) expressed using attributes

o Non-functional requirements

o Supporting analysis (e.g., performance, reliability)

 ConstraintBlock: Specifying interrelations

o Formal (e.g., MathML, OCL), or informal (textual)

o Adapted to analysis tool (not SysML specific)

 Parametric diagram: Concrete application

o Application of Constraint blocks in a given context

o Binding between values

34

Parametric diagram: Example

35

Illustration of the relations among diagrams

36

Verification tasks

General aspects and verification techniques

Verifying completeness and consistency

38

39

General criteria for a good specification

 Complete
o Specified functions, references, tools, …

 Consistent
o Internal and external consistency

o Traceability

 Verifiable
o Specific

o Unambiguous

o Quantifiable (if possible)

 Feasible
o Resources

o Usability

o Maintainability

o Risks: budget, technical, environmental

40

Example: Good specification on the basis of IEEE 830-1998

Correct

• Every requirement stated therein is one that the software shall meet

• Consistent with external sources (e.g. standards)

Unambiguous

• Every requirement has only one interpretation

• Formal or semi-formal specification languages can help

Complete

• For every (valid, invalid) input there is specified behavior

• TBD only possible resolution

Consistent

• No internal contradiction, well-defined terminology

Ranked for importance and/or stability

• Necessity of requirements

Verifiable

• Can be checked whether the requirement is met

Modifiable

• Not redundant, structured

Traceable

• Source is clear, effect can be referenced

41

Example: Good specification on the basis of IEEE 29148-2011

Necessary

• If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation-free

• Avoids placing unnecessary constraints on the design

Unambiguous

• It can be interpreted in only one way; is simple and easy to understand

Consistent

• Is free of conflicts with other requirements

Complete

• Needs no further amplification (measurable and sufficiently describes the capability)

Singular

• Includes only one requirement with no use of conjunctions

Feasible

• Technically achievable, fits within system constraints (cost, schedule, regulatory…)

Traceable

• Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

• Has the means to prove that the system satisfies the specified requirement

42

Techniques for verification

 Static analysis
o Checking documents, code or other artifacts
o Without execution

 Basis for static analysis: Checklists
o Examples: Criteria for good specification
o Completeness of the checklist is always questionable

 Implementation of static analysis
o Manual review (all aspects)
o Tool-support (esp. for checking consistency)

43

Manual review: Terminology and steps

Types of review:
 Informal review

o No formal process

o Peer or technical lead reviewing

 Walkthrough

o Meeting led by author

o May be quite informal

 Technical review

o Review meeting with experts

o Pre-meeting preparations for
reviewers

 Inspection

o Formal (well-documented) process

o Led by a trained moderator

Steps of a review:
1. Planning

o Defining review criteria
o Allocating roles

2. Kick-off
o Distributing documents
o Explaining objectives

3. Individual preparation
o Reviewing artifacts
o Collecting defects, questions

4. Review meeting
o Discussing and logging results
o Making decisions

5. Rework
o Fixing defects
o Recording updated status

6. Follow-up
o Checking fixes
o Checking exit criteria

44

Tool support for verification of the specification

 Natural languages
o Static analysis by manual review

 Semi-formal languages
o Precise syntax, but informal semantics
o Automated checking of syntax and well-formedness

(missing or contradictory elements)

 Formal languages
o Mathematically precise syntax and semantics
o Automated checking of syntax / well-formedness
o Automated checking of behavior

• Operational semantics: Reachable states of computation
(e.g., model checking, equivalence/refinement checking)

• Axiomatic semantics: Properties of computation
(e.g., theorem proving for invariants, post-conditions)

45

Tool support: Checking state machines

46

Yakindu Statechart Tools

https://www.youtube.com/
watch?v=uO6MASCBPrg

https://www.youtube.com/
watch?v=05lTlymLugM

IAR visualSTATE

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM

Verifying completeness and consistency

Incompleteness or inconsistency: major source of failures
 Statistics of faults found during the system testing of Voyager and

Galileo spacecraft:
78% (149/192) faults resulting from specification problem
o 23%: missing state transitions (stuck in dangerous state)

o 16%: missing time constraints for data validity

o 12%: missing reaction to external event

o 10%: missing assertions to check input values

 60-70% of IT project failures can be traced back to insufficient
requirements – Meta Group (2003)

 “Significantly more defects were found per page at the earlier
phases of the software life cycle.”
o Inspection of 203 documents

o An analysis of defect densities found during software inspections (JSS, DOI:
10.1016/0164-1212(92)90089-3)

47

Example: Review criteria for reactive systems

Groups of criteria (developed by N. Leveson, Safeware)

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

48

Operator

Controller
Controlled

systems

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

49

Operator

Controller
Controlled

systems

• Initial state is safe
• In case of missing input

there is a timeout,
and no action is allowed

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

50

Operator

Controller
Controlled

systems

• For every input in every
state there is a specified
behavior

• Reactions are unambiguous
(deterministic)

• Input is checked (value,
timeliness)

• Handling of invalid inputs is
specified

• Rate of interrupts is limited

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

51

Operator

Controller
Controlled

systems

• Credibility checks are
specified

• There is no unused output
• Processing capability of the

environment is respected

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

52

Operator

Controller
Controlled

systems

• Effect of outputs is checked
through the inputs

• Control loop is stable

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

53

Operator

Controller
Controlled

systems

• Every state is reachable
statically (incoming path)

• Transitions are reversible
(there is a way back)

• More than one transitions
from dangerous to safe states

• Confirmed transitions from
safe to dangerous states

Example: Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

54

Operator

Controller
Controlled

systems

• Priority of events to the
operator is defined

• Update rate is defined
• Processing capability of the

operator is respected

Managing requirements

Traceability

Basic tasks and tool support

56

The role of traceability

 Traceability of requirements: Managing links among requirements
and design artifacts

o Among various levels of requirements: User -> System -> Module

o Among requirements and design artifacts:
Req. specification -> Architecture design -> Module design ->
Source code -> Test -> Test result

 Analysis possibilities based on traceability links

o Impact analysis: handling the changes
• What is affected by a changed requirement?

o Derivation analysis: handling utility and rewards
• Why is this artifact here? What is the related requirement?

o Coverage analysis: handling the status of development
• What requirements are refined / implemented / tested?

57

Typical tasks of requirement management tools

Storing the requirements: Hierarchic grouping

Handling the lifecycle and changes

of requirements:

Using versions, attributes, timestamps,

showing timeline of changes

Storing the relations:

Support traceability:

Several types: Composition, derivation,

refinement, implementation, ..

Requirements – Design (models) –

Source code – Test – Test results

Navigation on relations: Forward: e.g., impact analysis

Backward: e.g., derivation analysis

Generation of coverage lists: Identify uncovered requirements or

extra functionality

Handling authorization: Defining roles and allowed activities

Sending notifications: Messages in case of changes

Assuring integrity: Detecting unintentional changes

58

Requirement management tools

59

https://www.youtube.com/
watch?v=qYK7_g4Fy44

https://www.youtube.com/
watch?v=YC_NrseqWcc

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc

Example: IBM Rational DOORS

Req.

object

identifier
Change

mark Header

object

Textual

object

Attributes

Hierarchy

62

Example: IBM Rational DOORS

The Instructor shall be able to

take control of any Student PC.

The system shall provide a facility for the Instructor

station to monitor a student PC

The system shall, when a student PC is being

monitored, provide a facility for the Instructor

station to take control of the selected student PC

The system shall disable student PC input when

control is taken by the instructor station

User level requirement

Lower level requirements for satisfying

the user level requirement

Indicator for incoming relations

satisfies

satisfies

satisfies

64

Requirement based verification tool-chains

 Assigning verification activities to requirements
o Checking satisfaction of the req., collecting evidences

o Standard-based techniques and measures (e.g., for safety case)

 Verification tool-chains (typically external)
o Analysis: Generating analysis model, performing analysis, post-

processing or visualization of results

o Testing: (Model based) test case generation, test execution, providing
test verdict

o Measuring: Configuring measurements, executing measurements,
data analysis

 Verification tool-chains can be started from the requirement
management tool
o Scripts with triggers (verifiable requirement)

 Registering the status of verification
o Successfully verified requirement + repository of evidences

68

Example: Starting verification tool chain from DOORS

Triggered from DOORS

Example tools:
– ITEM (Hazard and risk analysis)
– RACER (Formal verification)
– SCADE MTC (Simulation)
– LDRA (Testing)
– PROPANE (Fault injection)
– EMI Test Bench

Tool-chain
manager

Data &
Documents
Repository

Tool-chain
workflow

(V&V tool spec.)

V&V-

Tool
V&V-
Tools

69

Summary

 Inputs and outputs of the phase

 Preparing the requirements specification

o Formal languages

o Semi-formal and structured methods

 Verification tasks

o General aspects and verification techniques

o Verifying completeness and consistency

 Managing requirements

o Traceability

o Basic tasks and tool support

76

