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Software Verification and Validation (VIMMD052) 



Formal verification of CTL properties 

Formal model: 
KS, LTS, automata 

Formalized properties: 
CTL 

Formal verification: 
Model checking 
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Recap: Techniques for handling large state space 

 CTL model checking: Symbolic technique 

 

 

 

 

 
 

 Model checking of invariants: Bounded model checking 
o Model checking to a given depth: 

Searching for counterexamples with bounded length 

• A detected counterexample is always valid 

• Non-existing counterexample does not imply correctness 

o Background: Searching satisfying valuations for Boolean formulas with 
SAT/SMT techniques 

Set enumeration technique Symbolic technique 

Sets of labeled states Characteristic functions 
(Boolean functions): 
ROBDD representation 

Operations on sets of states Efficient operations on ROBDDs 
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The basic idea of bounded model checking 

 We do not handle the state space “all in one” 

 We perform checking by restricting the length of 
paths from the initial state 

o Partial verification: checking only up to a given bound 
in path length 

o The bound can be iteratively increased 

o In certain cases, the state space has a “diameter”:  
the length of the longest loop-free path 

• Increasing the bound to this length will result in complete 
checking 
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To be used: SAT solvers 

 SAT solver: 
o Given a Boolean formula (Boolean function), it searches for a model,  

i.e., a variable assignment (substitution) that makes the formula true 

o Example: for formula f(x1,x2,x3)=x1x2x3 substitution is (x1,x2,x3)=(1,1,0) 

 Hard problem, but efficient algorithms exist 
o zChaff, MiniSAT, … 
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Approach and goals 

 Mapping the bounded model checking problem (model + property) 
to a Boolean formula to be satisfied (by a SAT solver) 

o Model: Paths of bounded length are mapped to Boolean formula on the 
basis of the characteristic functions  

• Initial state 

• State transition relation to reach next states (along the path) 

o Property: Typically invariant properties mapped to Boolean formula as a 
characteristic function belonging to the property 

• Not limited to reachable states, but for all possible states 

 The Boolean formula belonging to the model checking problem will be 
constructed in the following way: 

o If the SAT solver finds a substitution for the formula, then the substitution 
induces a counterexample for the property 

o If the SAT solver finds no substitution for the formula,  
then the property holds 
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Informal introduction 

 How do we describe a path of bounded length? 

o Starting from the initial states: characteristic function I(s) 

o „Stepping forward” along potential transitions  s0  s1  s2  s3  … 

• Characteristic function of the transition relation: CR(s, s’) with variables for s, s’  

• Step between s0 and s1: characteristic function CR(s0, s1) with separate variables for s0, s1  

• Second step: CR(s1, s2) with separate variables for s1, s2  

• i-th step: CR(si, si+1) with separate variables for si-1, si 

 How do we describe the property? 

o Invariant (states with a given local property): characteristic function p(s) 

 The characterization of a counterexample (with conjunction): 

o Starting from the initial state: I(s)  

o „Stepping forward” n steps along the transition relation: CR(si, si+1)  

o To get a counterexample (somewhere p(si) fails): p(si) disjunction on states of the path 

 A substitution for this formula corresponds to a counterexample: 

CR CR CR 
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Notations 

 Kripke structure M=(S,R,L) 

 Logical formulas: 

o I(s): the characteristic formula of initial states with n variables 

• Background: Encoding states with a bit vector of length n 

o CR(si,si+1): the characteristic formula of transitions in 2n variables 

• Disjunction of the characteristic function of individual transitions 

o path(): characteristic function of paths of length k with (k+1)*n 
variables 

 

 

o p(s): characteristic function of the property 

• Based on the labeling of states with local property 

• In general: it can be constructed based on the state variables 
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Example: Encoding a model 

Transition relation: 
   CR(x,y, x’,y’) = (xy   x’  y’)  
              (x  y      x’  y’)  
              (   x  y   x’  y’)  
              (   x  y   x’y’) 

Paths with 3 steps (from any state): 
     path(s0,s1,s2,s3) =  
   CR(x0,y0, x1,y1)  
   CR(x1,y1, x2,y2)  
   CR(x2,y2, x3,y3) 

Initial state: 
   I(x,y) = (xy) 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

(0,0) (0,1) (1,1) 

s0: 

s1: 

s2: 

s3: 
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Example: Encoding a model 

Initial state: 
   I(x,y) = (xy) 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

(0,0) (0,1) (1,1) 

s0: 

s1: 

s2: 

s3: 
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Transition relation: 
   CR(x,y, x’,y’) = (xy   x’  y’)  
              (x  y      x’  y’)  
              (   x  y   x’  y’)  
              (   x  y   x’y’) 

Paths with 3 steps from the initial state: 

     I(x0,y0)  path(s0,s1,s2,s3) =  

        = I(x0,y0)  
   CR(x0,y0, x1,y1)  
   CR(x1,y1, x2,y2)  
   CR(x2,y2, x3,y3) 



Formalizing the problem 

 Invariant to prove: Each path from the initial states ends in a state where 
p(s) holds 

 

 

 Counterexample: If p(s) fails at some point then there exists an index i 
such that the following formula is satisfiable (a substitution exists): 

 

 

 The substitution can be found by the SAT solver 

o That is, values for the (i+1)*n variables that define the path (s0,s1,...,si) 

 First idea: for i=0,1,2,..., check whether for paths of length i the following 

formula can hold: 

  

00 1 0 1: , , . . . , : ( ( ) p a th ( , , . . . , ) ( ) )i i ii s s s I s s s s p s   

0 0 1( ) p a th ( , , .. . , ) ( )i iI s s s s p s  

0 0 1( ) p a th ( , , .. . , ) ( )i iI s s s s p s  
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Elements of the algorithm 

 Iteration:  i=0,1,2,... on the length of paths 

 We are investigating loop-free paths: lfpath 

 
 

 Termination condition during the iteration: 
o There is no loop-free path with length i from the initial state,  

that is, the following is not satisfiable: 

   

 

o There is no loop-free path with length i to a “bad state” (where p(s) does 
not hold), that is, the following is not satisfiable: 

 

 

 If the iteration stops, then p(s) holds invariably 

0 0 1( ) lfp a th ( , , ..., )iI s s s s

0 1lfp a th ( , , ..., ) ( )i is s s p s 

0 1 0 1

0

lfpath ( , , ..., ) path ( , , ..., )k k i j
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s s s s s s s s
  

  

Can be expressed in terms 
of the state variables 
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The algorithm 

 If the result is True: the invariant holds 

 If the result is a substitution of the n*(i+1) variables inducing a path (s0,s1,...,si):  
it is a counterexample for the property p(s) 

0 0 1

0 1

0 0 1

0

while True do

    if  not SAT( ( ) lfpath( , ,..., ))

                   or not SAT((lfpath( , , ..., ) ( ))

         then return True

    if   SAT( ( ) path( , ,..., ) ( ))

         then

i

i i

i i

i

I s s s s

s s s p s

I s s s s p s







 

0 1 return ( , ,..., )

    1

end

is s s

i i 

No loop-free paths of 
length i from the initial 
states 

No loop-free paths 
of length i to a 
“bad state” 

There is a path from 
an initial state to a 
“bad state” Iteration 
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Bounded model checking with iteration 

Unwinding the 
model up to 

length i 

Searching for a 
counterexample 

(SAT) 

Check the 
existence of longer 

paths 

Incrementing i 

[counterexample 
exists] 

[longer paths do not exist] 

Property fails 

Property holds 

i=0 
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Refining the algorithm 

 We do not start iterating from 0 
o Start with a given k, and try to generate the counterexample first 

• if such a counterexample exists, it is found quickly (without iterations) 

• If not: examine whether for k+1 the iteration terminates, and then increase k 

o It is not guaranteed that the length of the counterexample is minimal 

o Heuristics needed for estimating k if we aim to find a short counterexample 

 Further restrictions on paths (encoded in the path formula): 
o On paths, no initial states are traversed after the first one 

• Not necessarily a loop – there might be many initial states 

• Similarly: No bad states are traversed before the last state of the path 

o Only the shortest path is considered between two states 

• Longer paths between the same pair of states are excluded 

o All initial states (if there are many) are considered “at once” 

• Those paths are avoided on which the end state can be reached by a shorter path 
from another initial state 

• Similarly for the bad states 
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Summary: BMC 

 Efficient for checking invariant properties 

 Sound method using loop-free paths 
o If there is a counterexample up to a certain bound, it will be found 

o A counterexample found is a valid counterexample 

 Handling the state space 
o SAT solver: symbolic technique using Boolean formulas 

o For up to a given length of paths only a partial result is obtained 

 Finding the shortest counterexample is possible 
o Useful for generating test sequences 

 Automatic method 

 Tool examples: 
o Symbolic Analysis Laboratory (SAL): sal-bmc 

o SAL sal-atg: used for automated test generation 

o CBMC: bounded model checker for C source code 
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Outlook: The results of Intel (hardware models) 
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Bounded model checking based on 
software source code 
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Use for software: the problem of loops 

     Control flow graph (CFG):  Path enumeration: 

Traversing cycles might 
lead to new states 

Loop in the program: 
variables are modified, 
resulting in new states! 

26 



Handling the loops 

 Possibilities for handling the loops: 
o Path enumeration: 

• Systematically along all possible paths in execution cycles 

o Loop unrolling: 
• Unrolling loops in a limited number of runs 

Max. 2 
runs 
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Software model checking tools 

 F-SOFT (NEC): 
o Path enumeration 

o Used for checking Unix system utilities (e.g. pppd) 

 CBMC (CMU, Oxford University): 
o Supports C, SystemC 

o Loop unrolling 

o Support for certain system libraries in Linux, Windows, MacOS 

o Handling integer arithmetic:  
• Bit level („bit-flattening”, „bit-blasting”) 

o CBMC with SMT solving 

• Satisfiability Modulo Theories (SMT):  
SAT solving extended with first order theories, e.g. integer arithmetic 

 SATURN: 
o Loop unrolling: at most 2 runs 

o Full Linux kernel was verifiable for Null pointer dereferences 
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Supplementary material: 
k-induction 
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The basic idea of k-induction 

 Introduction: Let Pi be a series of properties 
o Traditional mathematical induction: 

 

o k-induction: 

 

 
 Idea: Application on state space to check invariants 

o Base case: The invariant holds on paths of length k from the 
initial state (this can be checked by bounded model checking) 

o Inductive step: If the invariant holds on paths of length k from 
any state, then it holds for the next states that follow the end 
states of each path (i.e., on paths of length k+1) 
• Single state transition from any state may not keep the property 

• But k successive transitions may keep the property to k+1 
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k-induction on the state space 

 Formula: 

 

 Its base case: 

Corresponds to: 

 

 

 Inductive step: 

Corresponds to:  
1
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Using k-induction 

 Cases for evaluating the invariant property: 
o If the base case (bounded model checking) provides a counter-

example: The invariant does not hold 

o If there is no counterexample in the base case and no 
counterexample in the inductive step: The invariant holds 

o Otherwise: It is not known whether the invariant holds 
• A counterexample resulting from the inductive step may not hold 

(considering the given initial state of the model) 

 Further steps if there is no decisive result: 
o Increasing the length of the induction 

• In case of longer paths decisive result may arise 

o Strengthening the invariant: P’ is checked instead of P, where P’ => P  

o Adding and extra invariant (additional knowledge) 
• If there is another invariant L then it restricts the paths considered: 
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Summary:  
Properties of model checking 
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Model checking during the design 

Requirement 
analysis 

System 
specification 

Architecture 
design 

Module 
design 

Module 
implementation 

Module 
verification 

System 
integration 

System 
verification 

System 
validation 

Operation, 
maintenance 

Module test 
design 

Integration test 
design 

System test 
design 

System validation 
design 
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Requirements 

Models to be 
verified New applications: 

Checking source code 



Efficient techniques for model checking 

 Symbolic model checking 
o Characteristic formulas represented as ROBDD 

o Efficient for „well structured” problems 
• E.g. identical processes in a protocol 

o Size depends on variable ordering 

 Bounded model checking for invariant properties 
o Based on satisfiability solving (SAT solver) 

o Searching for counterexamples of bounded length 
• A counterexample found is a valid counterexample 

• If no counterexample found, it is only a partial result 
(longer counterexamples might exist) 

o Good for test generation 
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Strengths of model checking 

 It is possible to handle large state spaces 

o State spaces of size 1020, but examples even for size 10100 

o This is the state space of the system (e.g. network of automata) 

o Efficient techniques: symbolic, SAT based (bounded) 

 General method 

o Software, hardware, protocols, … 

 Fully automatic tool, no intuition or strong mathematical 
background is needed 

o Theorem proving is much difficult to apply 

 Generates a counterexample that can be used for debugging 

 

Turing Award in 2007 for establishing model checking:  
E. M. Clarke, E. A. Emerson, J. Sifakis (1981) 
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Weaknesses of model checking 

 Scalability 
o Uses explicit state space traversal 

o Efficient techniques exist, but good scalability can not be 
guaranteed 

 Mainly for control driven applications 
o Complex data structures induce a large state space 

 Hard to generalize the results 
o If the protocol is correct for 2 processes,  

is it correct for N processes? 

 Formalizing requirements is hard 
o „Dialects” in temporal logic for different domains 

o IEEE standard: PSL (Property Specification Language) 
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