
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Bounded model checking

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Formal verification of CTL properties

Formal model:
KS, LTS, automata

Formalized properties:
CTL

Formal verification:
Model checking

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Recap: Techniques for handling large state space

 CTL model checking: Symbolic technique

 Model checking of invariants: Bounded model checking
o Model checking to a given depth:

Searching for counterexamples with bounded length

• A detected counterexample is always valid

• Non-existing counterexample does not imply correctness

o Background: Searching satisfying valuations for Boolean formulas with
SAT/SMT techniques

Set enumeration technique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations on sets of states Efficient operations on ROBDDs

3

The basic idea of bounded model checking

 We do not handle the state space “all in one”

 We perform checking by restricting the length of
paths from the initial state

o Partial verification: checking only up to a given bound
in path length

o The bound can be iteratively increased

o In certain cases, the state space has a “diameter”:
the length of the longest loop-free path

• Increasing the bound to this length will result in complete
checking

4

To be used: SAT solvers

 SAT solver:
o Given a Boolean formula (Boolean function), it searches for a model,

i.e., a variable assignment (substitution) that makes the formula true

o Example: for formula f(x1,x2,x3)=x1x2x3 substitution is (x1,x2,x3)=(1,1,0)

 Hard problem, but efficient algorithms exist
o zChaff, MiniSAT, …

1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010

Year

N
u

m
b

er
 o

f
va

ri
ab

le
s

5

Approach and goals

 Mapping the bounded model checking problem (model + property)
to a Boolean formula to be satisfied (by a SAT solver)

o Model: Paths of bounded length are mapped to Boolean formula on the
basis of the characteristic functions

• Initial state

• State transition relation to reach next states (along the path)

o Property: Typically invariant properties mapped to Boolean formula as a
characteristic function belonging to the property

• Not limited to reachable states, but for all possible states

 The Boolean formula belonging to the model checking problem will be
constructed in the following way:

o If the SAT solver finds a substitution for the formula, then the substitution
induces a counterexample for the property

o If the SAT solver finds no substitution for the formula,
then the property holds

6

Informal introduction

 How do we describe a path of bounded length?

o Starting from the initial states: characteristic function I(s)

o „Stepping forward” along potential transitions s0  s1  s2  s3  …

• Characteristic function of the transition relation: CR(s, s’) with variables for s, s’

• Step between s0 and s1: characteristic function CR(s0, s1) with separate variables for s0, s1

• Second step: CR(s1, s2) with separate variables for s1, s2

• i-th step: CR(si, si+1) with separate variables for si-1, si

 How do we describe the property?

o Invariant (states with a given local property): characteristic function p(s)

 The characterization of a counterexample (with conjunction):

o Starting from the initial state: I(s)

o „Stepping forward” n steps along the transition relation: CR(si, si+1)

o To get a counterexample (somewhere p(si) fails): p(si) disjunction on states of the path

 A substitution for this formula corresponds to a counterexample:

CR CR CR

7

Notations

 Kripke structure M=(S,R,L)

 Logical formulas:

o I(s): the characteristic formula of initial states with n variables

• Background: Encoding states with a bit vector of length n

o CR(si,si+1): the characteristic formula of transitions in 2n variables

• Disjunction of the characteristic function of individual transitions

o path(): characteristic function of paths of length k with (k+1)*n
variables

o p(s): characteristic function of the property

• Based on the labeling of states with local property

• In general: it can be constructed based on the state variables

0 1 1

0

path (, , ...,) (,)k i i

R
i k

s s s C s s 

 

 

8

Example: Encoding a model

Transition relation:
 CR(x,y, x’,y’) = (xy   x’ y’) 
  (x y  x’ y’) 
  (x y   x’ y’) 
  (x y   x’y’)

Paths with 3 steps (from any state):
 path(s0,s1,s2,s3) =
 CR(x0,y0, x1,y1) 
 CR(x1,y1, x2,y2) 
 CR(x2,y2, x3,y3)

Initial state:
 I(x,y) = (xy)

s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:

9

Example: Encoding a model

Initial state:
 I(x,y) = (xy)

s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:

10

Transition relation:
 CR(x,y, x’,y’) = (xy   x’ y’) 
  (x y  x’ y’) 
  (x y   x’ y’) 
  (x y   x’y’)

Paths with 3 steps from the initial state:

 I(x0,y0)  path(s0,s1,s2,s3) =

 = I(x0,y0) 
 CR(x0,y0, x1,y1) 
 CR(x1,y1, x2,y2) 
 CR(x2,y2, x3,y3)

Formalizing the problem

 Invariant to prove: Each path from the initial states ends in a state where
p(s) holds

 Counterexample: If p(s) fails at some point then there exists an index i
such that the following formula is satisfiable (a substitution exists):

 The substitution can be found by the SAT solver

o That is, values for the (i+1)*n variables that define the path (s0,s1,...,si)

 First idea: for i=0,1,2,..., check whether for paths of length i the following

formula can hold:

00 1 0 1: , , . . . , : (() p a th (, , . . . ,) ())i i ii s s s I s s s s p s   

0 0 1() p a th (, , .. . ,) ()i iI s s s s p s  

0 0 1() p a th (, , .. . ,) ()i iI s s s s p s  

11

Elements of the algorithm

 Iteration: i=0,1,2,... on the length of paths

 We are investigating loop-free paths: lfpath

 Termination condition during the iteration:
o There is no loop-free path with length i from the initial state,

that is, the following is not satisfiable:

o There is no loop-free path with length i to a “bad state” (where p(s) does
not hold), that is, the following is not satisfiable:

 If the iteration stops, then p(s) holds invariably

0 0 1() lfp a th (, , ...,)iI s s s s

0 1lfp a th (, , ...,) ()i is s s p s 

0 1 0 1

0

lfpath (, , ...,) path (, , ...,)k k i j

i j k

s s s s s s s s
  

  

Can be expressed in terms
of the state variables

12

The algorithm

 If the result is True: the invariant holds

 If the result is a substitution of the n*(i+1) variables inducing a path (s0,s1,...,si):
it is a counterexample for the property p(s)

0 0 1

0 1

0 0 1

0

while True do

 if not SAT(() lfpath(, ,...,))

 or not SAT((lfpath(, , ...,) ())

 then return True

 if SAT(() path(, ,...,) ())

 then

i

i i

i i

i

I s s s s

s s s p s

I s s s s p s







 

0 1 return (, ,...,)

 1

end

is s s

i i 

No loop-free paths of
length i from the initial
states

No loop-free paths
of length i to a
“bad state”

There is a path from
an initial state to a
“bad state” Iteration

13

Bounded model checking with iteration

Unwinding the
model up to

length i

Searching for a
counterexample

(SAT)

Check the
existence of longer

paths

Incrementing i

[counterexample
exists]

[longer paths do not exist]

Property fails

Property holds

i=0

14

Refining the algorithm

 We do not start iterating from 0
o Start with a given k, and try to generate the counterexample first

• if such a counterexample exists, it is found quickly (without iterations)

• If not: examine whether for k+1 the iteration terminates, and then increase k

o It is not guaranteed that the length of the counterexample is minimal

o Heuristics needed for estimating k if we aim to find a short counterexample

 Further restrictions on paths (encoded in the path formula):
o On paths, no initial states are traversed after the first one

• Not necessarily a loop – there might be many initial states

• Similarly: No bad states are traversed before the last state of the path

o Only the shortest path is considered between two states

• Longer paths between the same pair of states are excluded

o All initial states (if there are many) are considered “at once”

• Those paths are avoided on which the end state can be reached by a shorter path
from another initial state

• Similarly for the bad states

15

Summary: BMC

 Efficient for checking invariant properties

 Sound method using loop-free paths
o If there is a counterexample up to a certain bound, it will be found

o A counterexample found is a valid counterexample

 Handling the state space
o SAT solver: symbolic technique using Boolean formulas

o For up to a given length of paths only a partial result is obtained

 Finding the shortest counterexample is possible
o Useful for generating test sequences

 Automatic method

 Tool examples:
o Symbolic Analysis Laboratory (SAL): sal-bmc

o SAL sal-atg: used for automated test generation

o CBMC: bounded model checker for C source code

23

Outlook: The results of Intel (hardware models)

24

Bounded model checking based on
software source code

25

Use for software: the problem of loops

 Control flow graph (CFG): Path enumeration:

Traversing cycles might
lead to new states

Loop in the program:
variables are modified,
resulting in new states!

26

Handling the loops

 Possibilities for handling the loops:
o Path enumeration:

• Systematically along all possible paths in execution cycles

o Loop unrolling:
• Unrolling loops in a limited number of runs

Max. 2
runs

27

Software model checking tools

 F-SOFT (NEC):
o Path enumeration

o Used for checking Unix system utilities (e.g. pppd)

 CBMC (CMU, Oxford University):
o Supports C, SystemC

o Loop unrolling

o Support for certain system libraries in Linux, Windows, MacOS

o Handling integer arithmetic:
• Bit level („bit-flattening”, „bit-blasting”)

o CBMC with SMT solving

• Satisfiability Modulo Theories (SMT):
SAT solving extended with first order theories, e.g. integer arithmetic

 SATURN:
o Loop unrolling: at most 2 runs

o Full Linux kernel was verifiable for Null pointer dereferences

28

Supplementary material:
k-induction

29

The basic idea of k-induction

 Introduction: Let Pi be a series of properties
o Traditional mathematical induction:

o k-induction:

 Idea: Application on state space to check invariants

o Base case: The invariant holds on paths of length k from the
initial state (this can be checked by bounded model checking)

o Inductive step: If the invariant holds on paths of length k from
any state, then it holds for the next states that follow the end
states of each path (i.e., on paths of length k+1)
• Single state transition from any state may not keep the property

• But k successive transitions may keep the property to k+1

 0 1: :i i nP i P P n P   

1 1

0 0
: :

k k

j i j i k n
j j

P i P P n P
 

 
 

  
     




 
 

30

k-induction on the state space

 Formula:

 Its base case:

Corresponds to:

 Inductive step:

Corresponds to:
1

1 1: , ,..., : (, ,...,) () ()
i k

i i i k i i i k i i k

j i
i s s s path s s s P s P s

 
    



 
    

 


1

0

k

j
j

P





   0 1 1 0 0 1 1, , ..., : () (, , ...,) 0 1 : ()k k js s s I s path s s s j k P s       

1 1

0 0
: :

k k

j i j i k n
j j

P i P P n P
 

 
 

  
     




 
 

1

0
:

k

i j i k
j

i P P


 


  
   

  


31

Using k-induction

 Cases for evaluating the invariant property:
o If the base case (bounded model checking) provides a counter-

example: The invariant does not hold

o If there is no counterexample in the base case and no
counterexample in the inductive step: The invariant holds

o Otherwise: It is not known whether the invariant holds
• A counterexample resulting from the inductive step may not hold

(considering the given initial state of the model)

 Further steps if there is no decisive result:
o Increasing the length of the induction

• In case of longer paths decisive result may arise

o Strengthening the invariant: P’ is checked instead of P, where P’ => P

o Adding and extra invariant (additional knowledge)
• If there is another invariant L then it restricts the paths considered:

1 1

0 0
: () :i

k k

j i j i k n
j j

jP i P P n PL
 

 





  
     

  
 

32

Summary:
Properties of model checking

33

Model checking during the design

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System validation
design

34

Requirements

Models to be
verified New applications:

Checking source code

Efficient techniques for model checking

 Symbolic model checking
o Characteristic formulas represented as ROBDD

o Efficient for „well structured” problems
• E.g. identical processes in a protocol

o Size depends on variable ordering

 Bounded model checking for invariant properties
o Based on satisfiability solving (SAT solver)

o Searching for counterexamples of bounded length
• A counterexample found is a valid counterexample

• If no counterexample found, it is only a partial result
(longer counterexamples might exist)

o Good for test generation

35

Strengths of model checking

 It is possible to handle large state spaces

o State spaces of size 1020, but examples even for size 10100

o This is the state space of the system (e.g. network of automata)

o Efficient techniques: symbolic, SAT based (bounded)

 General method

o Software, hardware, protocols, …

 Fully automatic tool, no intuition or strong mathematical
background is needed

o Theorem proving is much difficult to apply

 Generates a counterexample that can be used for debugging

Turing Award in 2007 for establishing model checking:
E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

36

Weaknesses of model checking

 Scalability
o Uses explicit state space traversal

o Efficient techniques exist, but good scalability can not be
guaranteed

 Mainly for control driven applications
o Complex data structures induce a large state space

 Hard to generalize the results
o If the protocol is correct for 2 processes,

is it correct for N processes?

 Formalizing requirements is hard
o „Dialects” in temporal logic for different domains

o IEEE standard: PSL (Property Specification Language)

37

