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Intro: Equivalence and refinement

checking in model based design

Refining statechart models
Properties expected from refinement relations




Introduction: Relations between models

= Equivalence between models:

Reference model «» Modified model
Specification (abstract) <> Implementation (concrete, more detailed)
Expected behavior <> Provided behavior (e.g., protocol layers)

Fault-free “perfect” system <> Fault tolerant system in case of
fault to be tolerated

= Refinement between models:

o Preserving original behavior and extending it in an allowed way

o Reducing non-determinism in the model (with concrete conditions)




Example: Refinement in statechart models (1)

1 << COmponent ==
<< grtive ==
InitialMachine

VendingMachine refines InitialMachine

required interface R1{
takeGood operation;
takeChange operation;
1
private paySelectDeliver activity;
private giveChange activity;

provided interface 12{
{coin, good} new detailed operations;

3

private prepareGood activity;
private comput=Changs activity ;
private empty operation;

3

CoffeeMachine refines VendingMachine

provided interface 13
{coin1p, coinSp} operations refine coin;
coffes operation refines good;

Deliver a good
do | paySelectDeliver

ftakeGood
ftakeChange K W

MoneyBack
do ! giveChange

o

Deliver a good

7
required interface R3{

takeCofiee operation refines takeGood,
}

private encugh operation;
private prepar=Coffee activity;

\ | |EDIF'I

AcceptCaoin

coin

ProposeGood

cioin

when(empty) good
keGood| GoedDelivery

. do / prepareGood
\. )/

ftakeChange

MoneyBack
do ! computeChange

.“ﬁ Deliver a good

coinip[ELSE]
coini plenough]

f-‘-Dil'lSD:

AcceptCoin

coinip, coinSp

when{empty)

akeCoffes r CoffeeDelivery

ftakeChange

MoneyBack

do § computeChange




Example: Refinement in statechart models (2)

5
CancellableMachine extends CoffeeMachine

AnticipatingMachine refines CoffeeMachine

= Same inferfaces as CoffeeMachine = provided interface 14 extends I3{
cancel new extended operation;
¥
Deliver a good Dediver a good

coin1p[ELSE] cain1p[ELSE]
%)Jl, coin1plenouah]

coin1p[encugh .
Accept coin Plenough] AcceptCoin

coinap coinip, coinSp \gsp

ProposeCoffee ProposeCoffes
coinip, coinsp E

( when (empty) =
coffes when(empty) l/coﬁee
coinip, coinSp CoffeeDelivery ftakeCoffes
do / prepareCoffes / \
cancel
" ftakeChangs W
Money back MeoneyBack
do f computeChangs
fakeChange do / computeChange }




What is expected: Checking well-defined relations

1 InitialMachine

a

1
== refings ==
1

2 VendingMachine

7

1
== refines }}:

== gxtends ==

3 CoffeeMachine

<t

8

== refines ==|
1

o CancellableMachine

4 AnticipatingMachine

= “Refines” relation: to keep existing behavior (with proper
mapping of events and actions) with refinements

= “Extends” relation: to allow controlled changes in existing
behavior




What do we expect from a refinement relation?

Informal expectations:

Reflexive and transitive

Not symmetric

Keeping liveness property: The refined model shall be able to
provide the behavior that the original model is able to provide

o With proper mapping of events and actions of the refined model

o Assuming fairness: Keeping the liveness property in case of fair behavior
(i.e., in case of choices, all potential behaviors will eventually occur)

Composability:
o Subsequent refinements result in refinement
o Refinement and extension result in extension

Formal treatment:
Precise definitions of the relations are required!




Definition of the relations

= Relations are defined on low-level models,
typically on Labeled Transition System (LTS)

= Recap: The definition of LTS

LTS = (S, Act,—)
S set of states
Act set of actions coffee

—c Sx Act x S state transition relation

" | TS may be derived from higher-level formalisms
(using operational semantics)

o E.g., statecharts, Petri-nets, process algebra, ...




Example: Mapping LTS from statechart

.*-ﬂ Deliver a good ."“:5 Dieliver a good
Deliver a good -
coin1p{ELSE] - | n::om1p[ELSIﬂ
.‘ - cointpfenough] .S‘ [ coin1pfELSE] pye——— coinip{enough]
AcoeptCoin coinSp Accept coin coin plenough] %
) ) ProposeCoffee : ] ] ProposeCoffes
— coin1p, coinSp (empty) — coinip, coinsp
'
when{empty) coffes when(empty) coffes
ftakeCoffes | CoffeeDelivery coinip, cainSp CofieeDelivery takeCoffee | CoffesDelivery
\ do / prepareCoffee \ do / prepareCoffes )
\L / —
cancel
ftakeChange A fakeChange v
i P
MoneyBack Meoney back MoneyBack
do | computeChangs fakeChange | 4 computeChange do / computeChange
—

2:} Lﬂu.lL\..l

b. LTS4: AnticipatingMachine c. LTSs: CancellableMachine
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Equivalence relations

Trace equivalence
Strong bisimulation equivalence
Weak bisimulation (observational) equivalence
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YETEM 1782



Classification of relations

= Equivalence relations, denoted in general by =
o Reflexive, transitive, symmetric

Some equivalence relations are congruence:
o If T1=T2, then for all C[ | contexts C[T1]=C[T2]
o The same context preserves the equivalence
o Dependent on the formalism: how to embed T in C[ ]

= Refinement relations, denoted by <
o Reflexive, transitive, anti-symmetric (— partial order)

Precongruence relation:
o If T1<T2, then for all C[ ] contexts C[T1] < C[T2]
o The same context preserves the refinement




Equivalence checking using an equivalence relation

_ -7 Design Specification
r
Design model Reference model
(LTS) (LTS)

Automated
equivalence checker
Subsequent
design
\ steps
N/ No:Counter- \  ( Yes fr=—=-=-=-==-- >

example




simulation semantics

Hierarchy of relations proposed in the literature

(tree semantics)

bisimulation semantics

2-nested simulation semantics

ready simulation semantics

l possible-futures semantics

possible worlds semantics

ready trace semantics

N

failure trace semantics  readiness semantics

N

failures semantics

completed trace semantics

|

trace semantics

Why do exist so many relations?

convergent

delay bisimulation yl S
RN

infinitary

_ stable . . : °
bisimulation ,

divergence
sensitive
infinitary—u-
(finitary) —w=
finite  —w

ready

ﬁzilu{

branching bisimulation

divergence
sensitive

o
stably
coupled

I simulation

trace

(trace)

*
weak bi-
simulation

>

g.'ouzlqd

Sunuiation

~—{infinitary)

~— finitary

simulation

stable simulation




Properties that characterize the relations (1)

= Distinguishing observable and internal actions:

o Observable actions: Appear on the external interface (“ports”) of the
modeled component, relevant for the environment
* Representing: method call, sent or received message, provided service etc.

o Unobservable (internal) actions: Do not appear on the external interface
(“ports”) of the modeled component, not relevant for the environment

* Representing: internal activities, internal calls etc.
» Effects can be observed only through the consequences (subsequent actions)

* Notation: T (or sometimes i)

Example:
e Left: Internal actions e and f

e Right: Observable behavior
of the component:
e and f are mapped to 1 b




Properties that characterize the relations (2)

= Distinguishing observable and internal actions:

o Observable actions: Appear on the external interface (“ports”) of the
modeled component, relevant for the environment

* Representing: method call, sent or received message, provided service etc.

o Unobservable (internal) actions: Do not appear on the external interface
(“ports”) of the modeled component, not relevant for the environment

* Representing: internal activities, internal calls etc.
» Effects can be observed only through the consequences (subsequent actions)
* Notation: T (or sometimes i)
= Allowing nondeterminism:
o From a state, many transitions are labeled with the same action
* ”Image finite system”: their number is finite
o Typically used in abstract models, resolved during refinement

= Semantics of concurrent component models:
o Interleaving (one action at a time)
o True concurrency (several actions at a time)




The notion of “test” and “deadlock”

= “Test” in LTS based behavior checking:

o Test: A sequence of actions that is expected (from the initial state)

* Analogy: actions represent interactions on ports during testing
(e.g., sending or receiving messages, raising or processing events etc.)

o Test outcome:
* Fails: The sequence of actions cannot be provided by the LTS
e Test must be successful: The sequence of actions is always possible
* Test may be successful: Providing the sequence depends on the non-determinism

= “Deadlock” in LTS based behavior checking:

o A given action cannot be provided by the system in an expected action
sequence (test)

* Analogy: no interaction is possible on a port
(e.g., it is not possible to send or receive message, process an event etc.)

* The deadlock is given by the action that is not possible
o Failure of a test: The action that cannot be provided (gives deadlock)

o Classic example: Piano with keys that are unlocked by the actions of the LTS
e Successful test is a tune that can be played




Examples for deadlocks

= What is a potential deadlock after action a?

Act={a, b, c} ,Recursive” LTS models, Act={a}

Ié I

e How internal actions influence deadlock?

Act={a, b, c} Act={a, b, c}

TR, o
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Trace equivalence: Notation

= Analogy: Automata on finite words

A=A 1T L(A)=L(A)
o Applying this analogy in case of LTS:
* Each state is an “accepting state”
* “Language”: Each possible action sequence (trace)
= Notation:
o =a,a,a,a,..a, € Act™ finite action sequence (¢ is empty)

ai +1

04
s—s' If 3s,s,...s, state sequence wheres, =s, S, =S', S, —>S. ,

a(s) isatrace froms, if 3s':s—s'

A(S) 1s the set of traces from s: A(S) = {a |3s':s—>s }




Trace equivalence: Definition and examples

= Definition of trace equivalence =,
for T, and T, LTSs, with s; and s, initial states:

T, =, T, Iff. A(S,)=A(s,)

= Examples:

AL

A(s,)) = A(s,) =1¢,a,ab, ac A(s) =A(s,) =1¢,a, aa




Trace equivalence: Disadvantages

= (In)sensitivity to deadlock
o Equivalent LTSs may have different deadlock behavior
o Caused by nondeterminism or internal actions

A(s) =A(s,) ={¢,a,aa}

= Solution:

o It has to be checked whether the states reached by the
same trace allow the same continuation of the trace




Strong bisimulation relation: Definition

= Definition of the strong bisimulation relation B:
B — S xS Is abisimulation, if for all (s,t) € B and
any a € Act, s',t'e S it holds:

o Ifs—>s'thendt':t—>t' and (s',t)eB

o Ift>t' then3s':s—s'and (s',t") B

a




Strong bisimulation equivalence: Definition

= Strong bisimulation equivalence ~:
T,~T, iff 3B:(s,,s,) € B, also denoted as s, ~ s,

" |ntuition: Equivalent systems can “simulate” each other
o Matching transitions with actions in equivalent states
o The same traces are possible through equivalent states

= Examples:




Strong bisimulation equivalence: Example

= Strong bisimulation equivalence between LTSs:

?




Strong bisimulation equivalence: Advantages

= Strong bisimulation implies trace equivalence
= Strong bisimulation equivalent systems provide the same
deadlock behavior

o T1~T2 means: if deadlock is possible in LTS T, then the same
deadlock is possible in LTS T,

= |tis congruence for specific “CCS-like” LTS

o Recap: An equivalence relation is congruence if the same context
preserves the equivalence:

 Herein case of T1 ~T2, for all C[ ] context C[T1] ~C[T2]
o “CCS-like” LTS and embedding in a context:

e LTS has a tree structure

* Embedding an LTS: merging initial state of the embedded LTS T,
with any state of the context LTS C[ ] to get C[T ]




Strong bisimulation equivalence: Formalizing deadlock

= Possible deadlocks can be expressed using the Hennessy-
Milner logic

o In a given state, deadlock for action a is expressed as [a]false
* It holds only if there is no transition labeled with a, i.e., a is a deadlock

o Deadlock for a set of actions {a, a,, ... a,.}:
{[a,]false A [a,]false A ... A [a, ]false}

o Deadlock for a set of actions in a state reachable by <b,><b,>...<b_>:
<b,><b,>..<b_> {[a,]false A [a,]false A ... A [a ]false}

" Theorem:
In case of two LTSs, T,~T, iff for any HML expression p:

o either T,s, |[=pandT,,s, |=p, (i.e., both satisfy p)

o or T,5, Vp and T,,s, £ p (i.e., do not satisfy p)




Strong bisimulation equivalence: Disadvantages

= Sensitivity to unobservable actions:

o In some cases there is no observable effect of an
internal action, but the relation makes a difference

o Simple example:

e+ .
a a
[ ] ()
T b
o) o)
b




Weak bisimulation equivalence: Notation

" The “weak” variant of strong bisimulation

o It is not sensitive to internal actions without
observable effect

o Rationale: Have the possibility of the same observable
traces through equivalent states

= Notation:
a € Act™ finite action sequence (¢ is empty)

& € (Act — 7)™ observable action sequence (7 deleted)

here a =¢ If a=r1

p «
s=s' iIf da:s—s'and f=a




Weak bisimulation relation: Definition

= Definition of weak bisimulation relation WB:
WB < S xS weak bisimulation, if for all (s,t) e WB and
any a € Act, s',t'e S it holds:

e Ifs—s'then3t':.t=t"and (s',t') eWB
e Ift—>t'thends':s=s"and (s',t')eWB

4 S 0/\’\ """ WB//Q t "\ Incaseoft:




Weak bisimulation equivalence: Definition

= Weak bisimulation equivalence =
(also called as Observation equivalence)

T, =T, Iff IWB:(s;,s,) eWB, also denoted as s, = s,

= Examples: Internal action with effect:




Weak bisimulation equivalence: Formalizing deadlock

= HML variant for observable actions:
HML* ::=true | false | pAq | pvq | [[a]l]l p | <<a>>p

= Semantics:
oH3*:T,s [=[[a]]lp iff Vs"wheres=25s": s |=p
oH4*: Ts |=<<a>>piff ds’:s=?s"and s’ |=p

= Theorem:
In case of LTSs, T,~T, iff for any HML* expression p:

o either T,s, |[=pandT,s, |=p
o or T,s, £pandT,s, 4 p




Weak bisimulation equivalence: Properties

= |tis not congruence for CCS-like LTSs (there is a counterexample):
Context: T1~T2: C[T1] # C[T2]

~
S S,
\E ; e
a a

= |nteresting fact: The most permissive congruence relation,
that implies weak bisimulation equivalence:

s~" t, if forany ae Act, s',t'eS it holds:

e Ifs—s'thendt":t=t"ands'~t'

e Ift>t'then3ds':s=>s'ands'~t'




Computing equivalence relations: Basic idea

Partition refinement algorithm

1. Initially, each pair of states is assumed to be in relation
They form a single partition (equivalence class)

2. For each pair of states, it is to be checked:
If there is a labeled transition starting from one of the states
that cannot be simulated by a labeled transition from the other state, then
o Remove that state pair from the partition

o Apply the consequences of the removal: also remove the state pairs at the
sources of matching incoming transitions

* Since these are not equivalent if the matching transitions lead to non-
equivalent states

3. If there are no changes (fix-point is reached):
Equivalence classes are found

o If theinitial states are in the same equivalence class then the LTSs are
equivalent




Case study: Verification of fault

tolerance using observation equivalence




Case study: Verification of fault tolerance

Fault-tolerant (FT) system
in case of fault to be tolerated

Are these
techniques
sufficient to

Fault to be Technique |/ tolerate the
tolerated for FT <‘\\given faults?
J

-

Fault-free system Fault-free system
(reference behavior) (reference behavior)
Yes, if the
effects of the
given faults
do not

influence the
observable
behavior.
1 /

R -




System architecture

=5 b
Client

reply(v)
failure()

Fault to be tolerated:
Erroneous data in the
reply from the server

FT technigue: Redundant
servers and voting

Behavior from the point of

Gateway

request(r)

“Yoter

return(e)
error_voter()
error_server()

vote(el, e2)
vote(el, e2, e3)

return_voter(v) e
r

Sene

call(r)

call{ r) *G.return(e)
call( r) *G.error_server

WaitForCall

view of the client:

The observable behavior
of the gateway

N

vote( el ,e2 ) *G.return_voter(v)
vote( el,e2 ) *G.error_voter

/
]

x Here e may be erroneous

Here explicit server error




The Gateway component without fault tolerance

= Statechart diagram = LTS representation
(reference behavior): (reference behavior):

returni e ) IlC.reply(v\)
D\

( WaitRequest ]request(r)ﬂs.call(r\)[ WaitServer ]

) L

\ error_sewer“C.failure/

Explicit error signal from the server;
not to be tolerated




The Gateway comp

= Statechart diagram:

retum_voten( v ) “C.reply(v)

MUEGYETEM

return_voter v ) *C.rephy(v)

<<concurrents>

-

request( r) *$1.call(r)

WaitServert

retbm( 21 )

*42 call(r)

WaitServer2

retum( 82 )

rrg

error_server *C failure

error_server *C failure

M vote(e1, e2)

Vote

emor_voter “$3.call(r)

eror_sener ~C.failure

return( €3 ) V3 .vote(e1,e2,e3)

We:]m

onent with fault tolerance

= LTS representation:

failure

request

Failure Q failure

failure
Sl_call N§2_call

@)
S1_return

S2_return
error_server

efror_server|
® | -
\S2_call ‘Sl_call
reply (P\
error_server S1_rétum Neror_server
S2kreturn & O
vote vote
refum_voter O fetum_voter
error_voter error_voter J—
(failure .
(j efror_server S3_call \S3_call error_server
- 53l return
tailure
vote3 reply|
return_voter O

return_voter




The Gateway component with fault tolerance

= Statechart diagram: = LTS representation:

~—

return_voten v ) *C.replyiv)

<<concurrent>>
r N -\

MYovoteled, e2)
*$1.call(r) *32 call(r)

WiaitSenerd fre WiaitSener2

requestr)

retum( 21 )
eror_voter “$3.call(r)
. % b -
b / / ~4
error_senver “C.failure /
error_senver *C.failure
error_senver *C.failure
error_voter ~C failure W

Vote3 < I Wait Server3
retum_voten v ) “C.reply(v) l J return( &3 ) W3 . vote(e1,e2,e3)




The Gateway component with fault tolerance

= © 3 - _‘“\
request
failure . failure|
failure
Sl_call N§2_call
failure S1_stum S2_return
EITOr_server eITor_serv
|
\S2_call 'Sl ca]l
reply
€rror_server Sl retum EITOr_SErver
S2Lreturn
vote vote
C< retum_voter retum_voter
error_voter
failure
LJ eITOr_Server S3_call
O
-, S3l return
failure
efror_voter -

return_voter

bailure @ failure

failure

reply

retum_voter

(failure

(jL error_server

error_server

request

failure
Sl_call N§2_call

Slrtum 55 retum

\S2_call '§l_call

error_sefver S 1,(xfu.}em_ma

S2Lreturn

tailure

return_voter

vote vote
O retum_voter
emor_voter error_voter
S3_call \S3_call

53l return

efror_server|
reply
o \6

LTS representation:

failure

return_voter



Checking observation equivalence

Reference behavior
of the Gateway
(without fault
tolerance)

This way it is shown:
for the client
the fault tolerance technique
is transparent

U

)

= pOE = RN
request
kailure @ tatlore]....
failure
Sl_call “\§2_call
failure S1_return 52 return

error_server eITor_server;
5 | e

\§2 call §l_call
reply (P\
€Iror_server Sl_retum Serror_server
S2Lreturn .

vote vote
dJ‘ retum_voter retum_voter
=N =
efror_voter
failure
(JL efror_server S3_call ,[S3_call erTor_server
- S3l return
failure

return_voter,

Behavior of the FT Gateway;
here each action that is not observable

by the client becomes T




Checking fault tolerance in case of error from S1

Behavior of the
fault-free gateway

-

This way it is shown:
for the client
fault tolerance holds

Behavior of the FT Gateway in case of
error from S1 (voting and call of S3);
here each action that is not observable

by the client becomes T




= Motivation and basic ideas
o The role of behavioral equivalence and refinement
o Observable and unobservable behavior
o The notion of testing and deadlock

= Equivalence relations

o Trace equivalence

o Strong bisimulation equivalence

o Weak bisimulation equivalence (observation equivalence)
= Case study

o Verifying fault tolerance using observation equivalence

= (Refinement relations: See later!)




