
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Equivalence checking

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Intro: Equivalence and refinement
checking in model based design

Refining statechart models

Properties expected from refinement relations

2

Introduction: Relations between models

 Equivalence between models:
 Reference model Modified model

 Specification (abstract) Implementation (concrete, more detailed)

 Expected behavior Provided behavior (e.g., protocol layers)

 Fault-free “perfect” system Fault tolerant system in case of
 fault to be tolerated

 Refinement between models:
o Preserving original behavior and extending it in an allowed way

o Reducing non-determinism in the model (with concrete conditions)

3

Example: Refinement in statechart models (1)

4

Example: Refinement in statechart models (2)

5

What is expected: Checking well-defined relations

 “Refines” relation: to keep existing behavior (with proper
mapping of events and actions) with refinements

 “Extends” relation: to allow controlled changes in existing
behavior

6

What do we expect from a refinement relation?

Informal expectations:

 Reflexive and transitive

 Not symmetric

 Keeping liveness property: The refined model shall be able to
provide the behavior that the original model is able to provide
o With proper mapping of events and actions of the refined model

o Assuming fairness: Keeping the liveness property in case of fair behavior
(i.e., in case of choices, all potential behaviors will eventually occur)

 Composability:
o Subsequent refinements result in refinement

o Refinement and extension result in extension

 …

Formal treatment:

 Precise definitions of the relations are required!

7

Definition of the relations

 Relations are defined on low-level models,
typically on Labeled Transition System (LTS)

 Recap: The definition of LTS

 LTS may be derived from higher-level formalisms
(using operational semantics)

o E.g., statecharts, Petri-nets, process algebra, …

(, ,)

 set of states

 set of actions

 state transition relation

LTS S Act

S

Act

S Act S

8

coin

coffee tea

Example: Mapping LTS from statechart

9

Equivalence relations

Trace equivalence

Strong bisimulation equivalence

Weak bisimulation (observational) equivalence

10

Classification of relations

 Equivalence relations, denoted in general by =
o Reflexive, transitive, symmetric

 Some equivalence relations are congruence:
o If T1=T2, then for all C[] contexts C[T1]=C[T2]
o The same context preserves the equivalence
o Dependent on the formalism: how to embed T in C[]

 Refinement relations, denoted by
o Reflexive, transitive, anti-symmetric (partial order)

 Precongruence relation:
o If T1T2, then for all C[] contexts C[T1] C[T2]
o The same context preserves the refinement

11

Equivalence checking using an equivalence relation

Design

Design model
(LTS)

Specification

Reference model
(LTS)

No: Counter-
example

Yes

Subsequent
design
steps

Automated
equivalence checker

12

Hierarchy of relations proposed in the literature

Why do exist so many relations?

13

Properties that characterize the relations (1)

 Distinguishing observable and internal actions:
o Observable actions: Appear on the external interface (“ports”) of the

modeled component, relevant for the environment
• Representing: method call, sent or received message, provided service etc.

o Unobservable (internal) actions: Do not appear on the external interface
(“ports”) of the modeled component, not relevant for the environment

• Representing: internal activities, internal calls etc.

• Effects can be observed only through the consequences (subsequent actions)

• Notation: (or sometimes i)

14

a

e f

c b d

a

b

c

d

a

c b d

Example:
• Left: Internal actions e and f

• Right: Observable behavior
of the component:
e and f are mapped to

Properties that characterize the relations (2)

 Distinguishing observable and internal actions:
o Observable actions: Appear on the external interface (“ports”) of the

modeled component, relevant for the environment
• Representing: method call, sent or received message, provided service etc.

o Unobservable (internal) actions: Do not appear on the external interface
(“ports”) of the modeled component, not relevant for the environment

• Representing: internal activities, internal calls etc.

• Effects can be observed only through the consequences (subsequent actions)

• Notation: (or sometimes i)

 Allowing nondeterminism:
o From a state, many transitions are labeled with the same action

• ”Image finite system”: their number is finite

o Typically used in abstract models, resolved during refinement

 Semantics of concurrent component models:
o Interleaving (one action at a time)

o True concurrency (several actions at a time)

16

The notion of “test” and “deadlock”

 “Test” in LTS based behavior checking:
o Test: A sequence of actions that is expected (from the initial state)

• Analogy: actions represent interactions on ports during testing
(e.g., sending or receiving messages, raising or processing events etc.)

o Test outcome:
• Fails: The sequence of actions cannot be provided by the LTS

• Test must be successful: The sequence of actions is always possible

• Test may be successful: Providing the sequence depends on the non-determinism

 “Deadlock” in LTS based behavior checking:
o A given action cannot be provided by the system in an expected action

sequence (test)
• Analogy: no interaction is possible on a port

(e.g., it is not possible to send or receive message, process an event etc.)

• The deadlock is given by the action that is not possible

o Failure of a test: The action that cannot be provided (gives deadlock)

o Classic example: Piano with keys that are unlocked by the actions of the LTS
• Successful test is a tune that can be played

17

Examples for deadlocks

 What is a potential deadlock after action a?

„Recursive” LTS models, Act={a}

• How internal actions influence deadlock?

18

Act={a, b, c}

Act={a, b, c} Act={a, b, c}

Trace equivalence: Notation

 Analogy: Automata on finite words

o Applying this analogy in case of LTS:

• Each state is an “accepting state”

• ”Language”: Each possible action sequence (trace)

 Notation:

1 2 1 2 if () ()A A L A L A

1 2 3 4
*... finite action sequence (is empty)na a a a a Act

1

0 1 n 0 n 1' if s s ...s state sequence where s , s ',
ia

i is s s s s s

() is a trace from s, if ' : 's s s s

 () is the set of traces from s: () | ' : ' s s s s s

19

Trace equivalence: Definition and examples

 Definition of trace equivalence
for T1 and T2 LTSs, with s1 and s2 initial states:

 Examples:

1 2 1 2 iff. (s)= (s)T T

a a

b c

a

b c

 1 2() () , , ,s s a ab ac

s1 s2

a

a

 1 2() () , ,s s a aa

s1

a

a

s2

a

20

Trace equivalence: Disadvantages

 (In)sensitivity to deadlock
o Equivalent LTSs may have different deadlock behavior

o Caused by nondeterminism or internal actions

 Solution:
o It has to be checked whether the states reached by the

same trace allow the same continuation of the trace

21

a

a

 1 2() () , ,s s a aa

s1

a

a

s2

a

LTS T2 LTS T1

Strong bisimulation relation: Definition

 Definition of the strong bisimulation relation B:
 is a bisimulation, if for all (,) and

any , ', ' it holds:

 if ' then ' : ' and (', ')

 if ' then ' : ' and (', ')

a a

a a

B S S s t B

a Act s t S

s s t t t s t B

t t s s s s t B

a

s’

a

t’

s t B

B

22

Strong bisimulation equivalence: Definition

 Strong bisimulation equivalence ~:

 Intuition: Equivalent systems can “simulate” each other

o Matching transitions with actions in equivalent states

o The same traces are possible through equivalent states

 Examples:

1 2 1 2 1 2~ iff : (,) , also denoted as ~T T B s s B s s

23

a a

b b

a

s1 s2 ~

b

?

a a

b b

a

s1 s2 ~

b

Strong bisimulation equivalence: Example

a a

b c

a

b c

 1 2() () , , ,s s a ab ac

s1 s2
~

 Strong bisimulation equivalence between LTSs:

a a

b c

a

b c

 1 2() () , , ,s s a ab ac

s1 s2 ~
?

24

Strong bisimulation equivalence: Advantages

 Strong bisimulation implies trace equivalence

 Strong bisimulation equivalent systems provide the same
deadlock behavior

o T1 ~ T2 means: if deadlock is possible in LTS T1 then the same
deadlock is possible in LTS T2

 It is congruence for specific “CCS-like” LTS

o Recap: An equivalence relation is congruence if the same context
preserves the equivalence:

• Here in case of T1 ~ T2, for all C[] context C[T1] ~ C[T2]

o “CCS-like” LTS and embedding in a context:

• LTS has a tree structure

• Embedding an LTS: merging initial state of the embedded LTS Ti
with any state of the context LTS C[] to get C[Ti]

25

Strong bisimulation equivalence: Formalizing deadlock

 Possible deadlocks can be expressed using the Hennessy-
Milner logic
o In a given state, deadlock for action a is expressed as [a]false

• It holds only if there is no transition labeled with a, i.e., a is a deadlock

o Deadlock for a set of actions {a1, a2, … an}:
 {[a1]false [a2]false … [an]false}

o Deadlock for a set of actions in a state reachable by <b1><b2>…<bn>:
 <b1><b2>…<bn> {[a1]false [a2]false … [an]false}

 Theorem:
In case of two LTSs, T1~T2 iff for any HML expression p:

o either T1,s1 |= p and T2,s2 |= p, (i.e., both satisfy p)

o or T1,s1 |= p and T2,s2 |= p (i.e., do not satisfy p)

26

Strong bisimulation equivalence: Disadvantages

 Sensitivity to unobservable actions:

o In some cases there is no observable effect of an
internal action, but the relation makes a difference

o Simple example:

b

~
a

b

a

27

Weak bisimulation equivalence: Notation

 The “weak” variant of strong bisimulation
o It is not sensitive to internal actions without

observable effect

o Rationale: Have the possibility of the same observable
traces through equivalent states

 Notation:
* finite action sequence (is empty)Act

*ˆ () observable action sequence (deleted)

ˆ here if =

Act

ˆ' if : ' and s s s s

28

LTS T2 LTS T1

Weak bisimulation relation: Definition

 Definition of weak bisimulation relation WB:

ˆ

ˆ

 weak bisimulation, if for all (,) and

any , ', ' it holds:

 if ' then ' : ' and (', ')

 if ' then ' : ' and (', ')

a a

a a

WB S S s t WB

a Act s t S

s s t t t s t WB

t t s s s s t WB

a

s’

s t WB

WB
t’

â

29

In case of :

Weak bisimulation equivalence: Definition

 Weak bisimulation equivalence
(also called as Observation equivalence)

 Examples: Internal action with effect:

1 2 1 2 1 2 iff : (,) , also denoted as s sT T WB s s WB

b

a

b

a

a

*

*

a

 b

a

s1 s2

a b

30

Weak bisimulation equivalence: Formalizing deadlock

 HML variant for observable actions:
HML* ::= true | false | pq | pq | [[a]] p | <<a>> p

 Semantics:

o H3*: T,s |= [[a]]p iff s’ where s a s’: s’ |= p

o H4*: T,s |= <<a>>p iff s’: s a s’ and s’ |= p

 Theorem:
In case of LTSs, T1T2 iff for any HML* expression p:

o either T1,s1 |= p and T2,s2 |= p

o or T1,s1 |= p and T2,s2 |= p

31

Weak bisimulation equivalence: Properties

 It is not congruence for CCS-like LTSs (there is a counterexample):

 Interesting fact: The most permissive congruence relation,
that implies weak bisimulation equivalence:

, if for any , ', ' it holds:

 if ' then ' : ' and ' '

 if ' then ' : ' and ' '

c

a a

a a

s t a Act s t S

s s t t t s t

t t s s s s t

 b

a

s1 s2

a b

a

s1 s2

a

32

b

Context: T1T2: C[T1] C[T2]

Computing equivalence relations: Basic idea

Partition refinement algorithm
1. Initially, each pair of states is assumed to be in relation

 They form a single partition (equivalence class)

2. For each pair of states, it is to be checked:
 If there is a labeled transition starting from one of the states

 that cannot be simulated by a labeled transition from the other state, then

o Remove that state pair from the partition

o Apply the consequences of the removal: also remove the state pairs at the
sources of matching incoming transitions
• Since these are not equivalent if the matching transitions lead to non-

equivalent states

3. If there are no changes (fix-point is reached):
Equivalence classes are found
o If the initial states are in the same equivalence class then the LTSs are

equivalent

33

Case study: Verification of fault
tolerance using observation equivalence

34

Case study: Verification of fault tolerance

Fault-tolerant (FT) system
in case of fault to be tolerated

Fault-free system
(reference behavior)

?

Tolerálandó
hiba

Hibatűrés
technikája

Fault-free system
(reference behavior)

Fault to be
tolerated

Technique
for FT

35

Are these
techniques
sufficient to
tolerate the
given faults?

Yes, if the
effects of the
given faults

do not
influence the
observable
behavior.

System architecture

Behavior from the point of
view of the client:

 The observable behavior
of the gateway

Fault to be tolerated:
Erroneous data in the
reply from the server

FT technique: Redundant
servers and voting

36

Here explicit server error

Here e may be erroneous

The Gateway component without fault tolerance

 Statechart diagram
(reference behavior):

 LTS representation
(reference behavior):

37

Explicit error signal from the server;
not to be tolerated

The Gateway component with fault tolerance

 Statechart diagram: LTS representation:

38

39

The Gateway component with fault tolerance

 Statechart diagram: LTS representation:

40

 Statechart diagram: LTS representation:

The Gateway component with fault tolerance

 Állapotdiagram:

Checking observation equivalence

Behavior of the FT Gateway;
here each action that is not observable

by the client becomes

This way it is shown:
for the client

the fault tolerance technique
is transparent

Reference behavior
of the Gateway
(without fault
tolerance)

41

Checking fault tolerance in case of error from S1

Behavior of the FT Gateway in case of
error from S1 (voting and call of S3);
here each action that is not observable

by the client becomes

This way it is shown:
for the client

fault tolerance holds

Behavior of the
fault-free gateway

42

Summary

 Motivation and basic ideas

o The role of behavioral equivalence and refinement

o Observable and unobservable behavior

o The notion of testing and deadlock

 Equivalence relations

o Trace equivalence

o Strong bisimulation equivalence

o Weak bisimulation equivalence (observation equivalence)

 Case study

o Verifying fault tolerance using observation equivalence

 (Refinement relations: See later!)
43

