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Intro: Equivalence and refinement 
checking in model based design 

Refining statechart models 

Properties expected from refinement relations 

2 



Introduction: Relations between models 

 Equivalence between models: 
                        Reference model   Modified model 

             Specification (abstract)    Implementation (concrete, more detailed) 

                     Expected behavior    Provided behavior (e.g., protocol layers) 

     Fault-free “perfect” system    Fault tolerant system in case of  
           fault to be tolerated 

 

 Refinement between models: 
o Preserving original behavior and extending it in an allowed way 

o Reducing non-determinism in the model (with concrete conditions) 
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Example: Refinement in statechart models (1) 
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Example: Refinement in statechart models (2) 
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What is expected: Checking well-defined relations 

 “Refines” relation: to keep existing behavior (with proper 
mapping of events and actions) with refinements 

 “Extends” relation: to allow controlled changes in existing 
behavior 
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What do we expect from a refinement relation? 

Informal expectations: 

 Reflexive and transitive 

 Not symmetric 

 Keeping liveness property: The refined model shall be able to 
provide the behavior that the original model is able to provide 
o With proper mapping of events and actions of the refined model 

o Assuming fairness: Keeping the liveness property in case of fair behavior 
(i.e., in case of choices, all potential behaviors will eventually occur) 

 Composability: 
o Subsequent refinements result in refinement 

o Refinement and extension result in extension 

 … 
 

Formal treatment: 

 Precise definitions of the relations are required! 
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Definition of the relations 

 Relations are defined on low-level models, 
typically on Labeled Transition System (LTS) 

 Recap: The definition of LTS 

 

 

 

 

 LTS may be derived from higher-level formalisms 
(using operational semantics) 

o E.g., statecharts, Petri-nets, process algebra, … 

( , , )

    set of states

    set of actions

    state transition relation

LTS S Act

S

Act

S Act S
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Example: Mapping LTS from statechart 
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Equivalence relations 

Trace equivalence 

Strong bisimulation equivalence 

Weak bisimulation (observational) equivalence 
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Classification of relations 

 Equivalence relations, denoted in general by = 
o Reflexive, transitive, symmetric 

 Some equivalence relations are congruence: 
o If T1=T2, then for all C[ ] contexts C[T1]=C[T2] 
o The same context preserves the equivalence 
o Dependent on the formalism: how to embed T in C[ ] 
 

 Refinement relations, denoted by  
o Reflexive, transitive, anti-symmetric ( partial order) 

 Precongruence relation: 
o If T1T2, then for all C[ ] contexts C[T1]  C[T2] 
o The same context preserves the refinement 
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Equivalence checking using an equivalence relation 

Design 

Design model 
(LTS) 

Specification 

Reference model  
(LTS) 

No: Counter- 
example 

Yes 

Subsequent 
design  
steps 

Automated  
equivalence checker 
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Hierarchy of relations proposed in the literature 

Why do exist so many relations? 
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Properties that characterize the relations (1) 

 Distinguishing observable and internal actions: 
o Observable actions: Appear on the external interface (“ports”) of the 

modeled component, relevant for the environment 
• Representing: method call, sent or received message, provided service etc. 

o Unobservable (internal) actions: Do not appear on the external interface 
(“ports”) of the modeled component, not relevant for the environment 

• Representing: internal activities, internal calls etc. 

• Effects can be observed only through the consequences (subsequent actions) 

• Notation:   (or sometimes i) 
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Example: 
• Left: Internal actions e and f 

 

• Right: Observable behavior 
of the component: 
e and f are mapped to  



Properties that characterize the relations (2) 

 Distinguishing observable and internal actions: 
o Observable actions: Appear on the external interface (“ports”) of the 

modeled component, relevant for the environment 
• Representing: method call, sent or received message, provided service etc. 

o Unobservable (internal) actions: Do not appear on the external interface 
(“ports”) of the modeled component, not relevant for the environment 

• Representing: internal activities, internal calls etc. 

• Effects can be observed only through the consequences (subsequent actions) 

• Notation:   (or sometimes i) 

 Allowing nondeterminism: 
o From a state, many transitions are labeled with the same action 

• ”Image finite system”: their number is finite 

o Typically used in abstract models, resolved during refinement 

 Semantics of concurrent component models: 
o Interleaving (one action at a time) 

o True concurrency (several actions at a time) 
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The notion of “test” and “deadlock” 

 “Test” in LTS based behavior checking: 
o Test: A sequence of actions that is expected (from the initial state) 

• Analogy: actions represent interactions on ports during testing  
(e.g., sending or receiving messages, raising or processing events etc.) 

o Test outcome: 
• Fails: The sequence of actions cannot be provided by the LTS 

• Test must be successful: The sequence of actions is always possible 

• Test may be successful: Providing the sequence depends on the non-determinism 

 “Deadlock” in LTS based behavior checking: 
o A given action cannot be provided by the system in an expected action 

sequence (test) 
• Analogy: no interaction is possible on a port 

(e.g., it is not possible to send or receive message, process an event etc.) 

• The deadlock is given by the action that is not possible 

o Failure of a test: The action that cannot be provided (gives deadlock) 
 

o Classic example: Piano with keys that are unlocked by the actions of the LTS 
• Successful test is a tune that can be played 
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Examples for deadlocks 

 What is a potential deadlock after action a? 

„Recursive” LTS models, Act={a} 

• How internal actions influence deadlock? 
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Act={a, b, c} 

Act={a, b, c} Act={a, b, c} 



Trace equivalence: Notation 

 Analogy: Automata on finite words 

 

o Applying this analogy in case of LTS: 

• Each state is an “accepting state” 

• ”Language”: Each possible action sequence (trace) 

 Notation: 

1 2 1 2  if  ( ) ( )A A L A L A 

1 2 3 4
*...  finite action sequence (  is empty)na a a a a Act  

1

0 1 n 0 n 1'  if s s ...s  state sequence where s ,  s ',  
ia

i is s s s s s
 

    

( ) is a trace from s, if ' : 's s s s


  

 ( ) is the set of traces from s:  ( ) | ' : '  s s s s s


    

19 



Trace equivalence: Definition and examples 

 Definition of trace equivalence    
for T1 and T2 LTSs, with s1 and s2 initial states: 

 
 Examples: 

1 2 1 2  iff.  (s )= (s )T T  

a a 

b c 

a 

b c 

 1 2( ) ( ) , , ,s s a ab ac   

s1 s2 


a 

a 

 1 2( ) ( ) , ,s s a aa   

s1 

a 

a 

s2 

a 
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Trace equivalence: Disadvantages 

 (In)sensitivity to deadlock 
o Equivalent LTSs may have different deadlock behavior 

o Caused by nondeterminism or internal actions 

 

 

 

 

 

 

 Solution: 
o It has to be checked whether the states reached by the 

same trace allow the same continuation of the trace 
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LTS T2 LTS T1 

Strong bisimulation relation: Definition 

 Definition of the strong bisimulation relation B:  
 is a bisimulation, if for all ( , )  and 

any ,  ', '  it holds:

  if '  then ' : '   and ( ', ')

  if '   then ' : '  and ( ', ')

a a

a a

B S S s t B

a Act s t S

s s t t t s t B

t t s s s s t B

  

 

    

    

a 

s’ 

a 

t’ 

s t B 

B 
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Strong bisimulation equivalence: Definition 

 Strong bisimulation equivalence ~: 

 
 Intuition: Equivalent systems can “simulate” each other 

o Matching transitions with actions in equivalent states 

o The same traces are possible through equivalent states 

 Examples: 

1 2 1 2 1 2~   iff  : ( , ) ,  also denoted as ~T T B s s B s s 
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Strong bisimulation equivalence: Example 

a a 

b c 

a 

b c 

 1 2( ) ( ) , , ,s s a ab ac   

s1 s2 
~

 Strong bisimulation equivalence between LTSs: 

a a 

b c 

a 

b c 

 1 2( ) ( ) , , ,s s a ab ac   

s1 s2 ~
? 
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Strong bisimulation equivalence: Advantages 

 Strong bisimulation implies trace equivalence 

 Strong bisimulation equivalent systems provide the same 
deadlock behavior 

o T1 ~ T2 means: if deadlock is possible in LTS T1 then the same 
deadlock is possible in LTS T2 

 It is congruence for specific “CCS-like” LTS 

o Recap: An equivalence relation is congruence if the same context 
preserves the equivalence: 

• Here in case of T1 ~ T2, for all C[ ] context C[T1] ~ C[T2] 

o “CCS-like” LTS and embedding in a context:  

• LTS has a tree structure 

• Embedding an LTS: merging initial state of the embedded LTS Ti 
with any state of the context LTS C[ ] to get C[Ti]  
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Strong bisimulation equivalence: Formalizing deadlock 

 Possible deadlocks can be expressed using the Hennessy-
Milner logic 
o In a given state, deadlock for action a is expressed as [a]false  

• It holds only if there is no transition labeled with a, i.e., a is a deadlock 

o Deadlock for a set of actions {a1, a2, … an}: 
  {[a1]false  [a2]false  …  [an]false} 

o Deadlock for a set of actions in a state reachable by <b1><b2>…<bn>:  
  <b1><b2>…<bn> {[a1]false  [a2]false  …  [an]false} 

 Theorem:  
In case of two LTSs, T1~T2 iff for any HML expression p: 

o either  T1,s1 |= p and T2,s2 |= p, (i.e., both satisfy p) 

o or  T1,s1 |= p  and T2,s2 |= p  (i.e., do not satisfy p) 
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Strong bisimulation equivalence: Disadvantages 

 Sensitivity to unobservable actions: 

o In some cases there is no observable effect of an 
internal action, but the relation makes a difference 

o Simple example: 

 

b 

~
a 

b 

a 
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Weak bisimulation equivalence: Notation 

 The “weak” variant of strong bisimulation 
o It is not sensitive to internal actions without 

observable effect 

o Rationale: Have the possibility of the same observable 
traces through equivalent states 

 Notation: 
*  finite action sequence (  is empty)Act 

*ˆ ( )  observable action sequence (  deleted)

ˆ     here   if  =

Act  

   

 



ˆ'   if  : '  and  s s s s
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LTS T2 LTS T1 

Weak bisimulation relation: Definition 

 Definition of weak bisimulation relation WB:  

ˆ

ˆ

 weak bisimulation, if for all ( , )  and 

any ,  ', '  it holds:

  if '  then ' : '  and ( ', ')

  if '  then ' : '  and ( ', ')

a a

a a

WB S S s t WB

a Act s t S

s s t t t s t WB

t t s s s s t WB

  

 

    

    

a 

s’ 

s t WB 

WB 
t’ 

â
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In case of  : 



Weak bisimulation equivalence: Definition 

 Weak bisimulation equivalence  
(also called as Observation equivalence) 

 
 

 Examples:       Internal action with effect: 

1 2 1 2 1 2  iff  : ( , ) ,  also denoted as s sT T WB s s WB   



 

b 

a 

b 

a 

a 

* 

* 

a 



 b 

a 

s1 s2 


a b 
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Weak bisimulation equivalence: Formalizing deadlock 

 HML variant for observable actions: 
HML* ::= true | false | pq | pq | [[a]] p | <<a>> p 

 Semantics: 

o H3*: T,s |= [[a]]p     iff  s’ where s a s’:  s’ |= p  

o H4*: T,s |= <<a>>p iff   s’: s a s’ and  s’ |= p 

 Theorem:  
In case of LTSs, T1T2 iff for any HML* expression p: 

o either  T1,s1 |= p and T2,s2 |= p  

o or  T1,s1 |= p and T2,s2 |= p  
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Weak bisimulation equivalence: Properties 

 It is not congruence for CCS-like LTSs (there is a counterexample): 
 

 

 

 

 

 

 

 

 Interesting fact: The most permissive congruence relation,  
that implies weak bisimulation equivalence: 

, if for any ,  ', '  it holds:

  if '  then ' : '  and ' '

  if '  then ' : '  and ' '

c

a a

a a

s t a Act s t S

s s t t t s t

t t s s s s t

  

    

    

 b 

a 

s1 s2 



a b 
 

a 

s1 s2 


a 
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Context: T1T2: C[T1]  C[T2] 



Computing equivalence relations: Basic idea 

Partition refinement algorithm 
1. Initially, each pair of states is assumed to be in relation 

  They form a single partition (equivalence class) 

2. For each pair of states, it is to be checked: 
  If there is a labeled transition starting from one of the states  

  that cannot be simulated by a labeled transition from the other state, then  

o Remove that state pair from the partition 

o Apply the consequences of the removal: also remove the state pairs at the 
sources of matching incoming transitions 
• Since these are not equivalent if the matching transitions lead to non-

equivalent states 

3. If there are no changes (fix-point is reached):  
Equivalence classes are found 
o If the initial states are in the same equivalence class then the LTSs are 

equivalent 
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Case study: Verification of fault 
tolerance using observation equivalence 
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Case study: Verification of fault tolerance 

Fault-tolerant (FT) system 
in case of fault to be tolerated 

Fault-free system 
(reference behavior) 

? 
 

Tolerálandó 
hiba 



Hibatűrés 
technikája 

Fault-free system 
(reference behavior) 

Fault to be 
tolerated 

Technique 
for FT 
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Are these 
techniques 
sufficient to 
tolerate the 
given faults? 

Yes, if the 
effects of the 
given faults 

do not 
influence the 
observable 
behavior. 



System architecture 

  

Behavior from the point of 
view of the client: 

 The observable behavior 
of the gateway 

Fault to be tolerated: 
Erroneous data in the 
reply from the server 

FT technique: Redundant 
servers and voting 
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Here explicit server error 

Here e may be erroneous 



The Gateway component without fault tolerance 

 Statechart diagram 
(reference behavior): 

 LTS representation 
(reference behavior): 
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Explicit error signal from the server; 
not to be tolerated 



The Gateway component with fault tolerance 

 Statechart diagram:  LTS representation: 

38 



39 

The Gateway component with fault tolerance 

 Statechart diagram:  LTS representation: 
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 Statechart diagram:  LTS representation: 

The Gateway component with fault tolerance 

 Állapotdiagram: 



Checking observation equivalence 

 

Behavior of the FT Gateway; 
here each action that is not observable 

by the client becomes  

This way it is shown: 
for the client 

the fault tolerance technique  
is transparent 

Reference behavior  
of the Gateway 
(without fault  
tolerance) 
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Checking fault tolerance in case of error from S1 

 

Behavior of the FT Gateway in case of 
error from S1 (voting and call of S3);  
here each action that is not observable 

by the client becomes  

This way it is shown: 
for the client 

fault tolerance holds 

Behavior of the 
fault-free gateway 
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Summary 

 Motivation and basic ideas 

o The role of behavioral equivalence and refinement 

o Observable and unobservable behavior 

o The notion of testing and deadlock 

 Equivalence relations 

o Trace equivalence 

o Strong bisimulation equivalence 

o Weak bisimulation equivalence (observation equivalence) 

 Case study 

o Verifying fault tolerance using observation equivalence 

 (Refinement relations: See later!) 
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