Proof of program correctness

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Typical development steps and V&V tasks

Approach: Theorem proving

3

Motivation

- Proof of the correctness of critical algorithms
 - Restricted to core functions: safety-critical modules, security related algorithms, communication protocols, ...
 - Basis for correctness proof:
 - Detailed design: Algorithm given in pseudo-language (called in the following as "program")
 - Real source code: Subset of real programming languages
- Using a theorem proving approach
 - Property to be verified is a "theorem" to be proven
 - Contract (pre- and post-conditions) can be mapped to theorems: A post-condition is satisfied by the program if the preconditions hold
 - Formal reasoning is applied to prove the theorem
- Challenges:
 - How to derive theorem from a (pseudo) program?
 - What are the efficient proof strategies?

Theorem proving systems

- Parts of theorem proving systems:
 - **Deduction system**: Description of the problem space
 - Theorem (to be proven): The property to be checked
 - (Logic) axioms: Premise or starting statements for further reasoning
 - Inference rules: Induction, deduction, unification, ...
 - Problem description language
 - E.g., first order logic (FOL), FOL extended with types, higher order logic (HOL), ...
- Components:
 - Algorithmic: Application of the inference rules
 - Search: Strategy or tactic for selecting inference rules
 - Goal-driven (backward) search
 - Depth-first or breadth-first search
 - Interactive (with hints from the user)
- Popular theorem proving tools
 - HOL, PVS, ACL2, ...

Application of theorem proving systems

- Use cases
 - Theorem proving: Deriving automatically the proof of the theorem
 - Proof checking: Automatic checking of a manual proof
 - Interactive proving: Supporting manual proof steps (application of rules)
- Typical tasks for theorem proving
 - Verifying data-intensive algorithms (using theories for the data types)
 - Verifying parameter dependency (e.g., number of participants in a protocol)
 - (Mathematical) induction can be used
 - Using together with model checking for parameterized systems
 - Initially, verifying the property for the smallest parameter: model checking
 - Proof of preserving the property when the parameter increases: by induction
- Automatic theorem proving is a complex task
 - In general, varies from trivial to impossible (depending on the underlying logic)
 - Propositional logic: Decidable, but only exponential-time algorithms are believed to exist for general proof tasks
 - It is important to have a good proof strategy

Properties of theorem proving systems

D deduction system, c property (theorem) to be proven

- Semantic soundness:
 - What can be deduced in D, it is true (it holds)
 - Necessary property for usability
 - Formally: $\forall c$: if $|-_{D}c|$ (it can be deduced) then |=c| (it holds)
- Semantic completeness:
 - What is true, that can be deduced in D
 - Useful property, but not always possible
 - Formally: $\forall c$: if |=c then $|-_{D}c$
- Consistency:
 - It is not possible to deduce a theorem and its opposite
- Total soundness and completeness:
 - Sound and complete for all interpretation (of variables)

Mapping the verification task to theorem proving

Sources for the parts of deduction systems:

- For the axioms (= starting statements for reasoning):
 - Program domain axioms (e.g., integer, string, list theories)
 - Program statements (e.g., value assignments) depending on the theorem proving approach
- For the inference rules:
 - Semantics of the programming language
 - Semantics of the program domain
- For the theorem to be proven:
 - Program and its specification (pre- and post-conditions)
- What is the proper proof strategy?

Inductive strategies for correctness proof

Computational induction: Based on operational semantics

For states in program paths:

If the properties of the initial state are known then the properties of the terminal state of a program path can be deduced by following the semantics of state transitions

- Structural induction: Based on axiomatic semantics
 - For syntactic constructs:

If the properties of components are known then the properties of the composite constructs can be derived on the basis of the semantics of the syntactic composition

Goals of this lecture

- Proposing proof strategies for proving program correctness

 The proof strategy may require manual steps
 In general, there is no fully automated efficient proof technique
- The strategy is not for a concrete programming language
 - **Pseudo-languages** are used (for algorithm description)
 - In the following, it is called as "programming language"
 - E.g., domain-specific languages may also be supported
- Assumptions for provability
 - Programming language: Formal semantics is defined (operational or axiomatic semantics)
 - Specification language: First order logic

Specifying program correctness

Programming language with operational semantics

- "State": Configuration C(σ,λ)
 - $\circ \sigma$ observable state (included in the output of the program)
 - $\sigma[x]$ is the value of variable x in observable state σ
 - $\sigma[\underline{x}]$ is the value of variable vector \underline{x} in observable state σ
 - Unobservable (hidden) state (not relevant for correctness)
 - \circ Syntactic continuation λ : Defines the further computation
 - Analogy: "program counter"
 - Defines the statements to be executed (e.g., in the source code)
- Transition relation among configurations: →
 - σ_0 $\pi(P, \sigma_0)$ is the computation of program P from initial observable state σ_0
 - $C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow ...$ maximal sequence (to the terminal state, or infinite)
 - $\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow ...$ observable state sequence
 - $val(\pi(P, \sigma)) = \sigma_n$ terminal state in case of finite computation
- Domain I: Computations (variables) are interpreted here

Specifying program properties

- Restrictions for the program:
 - Deterministic
 - Terminating (not continuously operating):
 Performs value (or state) transformation
- Specification of program properties: Predicates
 - Precondition: p(x) specifies the allowed initial states
 - <u>x</u> variables in the observable state
 - $\sigma_0 = p(\underline{x})$ means: in the initial state $p(\underline{x})$ holds
 - \circ Postcondition: $q(\underline{x})$ specifies the acceptable terminal states
 - true holds in all terminating computations
 - false does not hold in any terminal state
 - $val(\pi(P,\sigma_0)) \models q(\underline{x})$ means: $q(\underline{x})$ holds in terminal state of π
- Construction of pre- and postconditions
 - Using (existentially quantified) bound auxiliary variables
 - Using specification variables

Examples for specifications (in the integer domain)

- The program outputs x and y where y is greater than x: Precondition p(x,y) = true, postcondition q(x,y) = y>x In other form, pre- and postcondition together: (true, y>x)
- The program outputs x that is an even number:

 (true, even(x))
 (true, ∃y: x=2y)
 if there is a function even(x) in the domain
 here y is a bound auxiliary variable in q(x)
- The program doubles its input x: (X=x, x=2X)
 here X is a specification variable
- The program outputs the quotient q and remainder r of the positive integer division x/y:

(X=x \land x>0 \land Y=y \land y>0, X=q·Y+r \land 0<=r<Y)

If the value of x and y have to be preserved:

 $(X=x \land x>0 \land Y=y \land y>0, X=q\cdot Y+r \land 0<=r<Y \land x=X \land y=Y)$

Program correctness criteria: Partial correctness

- Partial correctness: Notation is {p(x)} P {q(x)}
 - A program P is partially correct according to p(x) and q(x), if the following statement holds:

 $\forall \pi(P,\sigma_0) \text{ and } \sigma_0 \mid = p(\underline{x}):$ if π terminates then $val(\pi(P,\sigma_0)) \mid = q(\underline{x})$

Notes:

- Statement for the computations that start from an initial state and satisfy the precondition: if the computation terminates, then the postcondition holds in the final state
- Does not guarantee anything about the computations for which $\sigma_0 \neq p(\mathbf{x})$
- {true} P {true} holds for all programs
- If {true} P {false} holds: there is no terminating computation

Program correctness criteria: Total correctness

(Total) correctness: Notation is <p(x)> P <q(x)>

Program P is correct according to $p(\underline{x})$ and $q(\underline{x})$, if the following statement holds:

 $\forall \pi(P,\sigma_0) \text{ and } \sigma_0 \mid = p(\underline{x}):$ $\pi \text{ terminates and } val(\pi(P,\sigma_0) \mid = q(\underline{x}))$

Notes:

- Statement for the computations that start from an initial state and satisfy the precondition: the computation terminates and the postcondition holds in the final state
- o <p(x)> P <true> specifies termination only
- It can be stated:
 - $(x) > P < q(x) > iff \{p(x)\} P \{q(x)\} and < p(x) > P < true >$

i.e., the program is correct if partially correct and terminates

Proof of correctness for simple flow programs

Flow language for simple deterministic programs

- PLF "flow language": Pseudo-language similar to assembly
 - Statements *start*, <u>x</u>:=<u>e</u>, $B(\underline{x})$, *halt* with unique labels I_0 (start), I_* (halt), I_i , ...
- Structure of a PLF program: Finite directed graph
 - Vertices: statements; edges: sequencing of statements
 - Notation: $succ(I_i)$, and $succ(I_i)$, $succ(I_i)$ in case of branch give the next vertex
 - $\circ~$ All statements are on a ~ start $\rightarrow~$ halt path
- Semantics of PLF: Defining $C=(\sigma,\lambda)$ configuration and \rightarrow relation: $C(\sigma,\lambda) \rightarrow C'(\sigma',\lambda')$ with λ as label I iff
 - \circ λ is at *start*: $\lambda' = succ(\lambda), \sigma' = \sigma$
 - \circ λ is at statement <u>x</u>:=<u>e</u> : λ'=succ(λ), σ'=σ[<u>e</u>/<u>x</u>]

here $[\underline{e}/\underline{x}]$ denotes that \underline{e} replaces \underline{x}

- λ is at branching condition $B(\underline{x})$:
 - If $\sigma \mid = B(\underline{x})$ then $\lambda' = \operatorname{succ}^+(\lambda)$, $\sigma' = \sigma$
 - If $\sigma \neq B(\underline{x})$ then $\lambda' = \operatorname{succ}(\lambda)$, $\sigma' = \sigma$

Example: Integer division

x/y positive integer division, dividend x, divider y, quotient q, remainder r:

Preview of the proof strategies

- Partial correctness for loop-free programs
 O Approach: Backward computational induction
- Partial correctness for programs with loops
 O Approach: Inductive assertions
- Correctness for programs with loops: Proving termination
 - Approach: Parameterized inductive assertions

Partial correctness for loop-free programs (1)

- Idea: Computational induction in case of proving {p} P {q}
- Characteristics of a path u belonging to a finite computation $u = I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow ... \rightarrow I_m \rightarrow ... \rightarrow I_k$
 - **Reachability condition**: $R_u(\underline{x})$ predicate for traversing path u
 - If it holds in case of I_0 then the path u is traversed
 - State transformation: $T_u(\underline{x})$ the final state after traversing path u
 - Starting from a state vector \underline{x} , after traversing \underline{u} the observable final state is $T_{\underline{u}}(\underline{x})$
 - In other words: <u>x</u> := T_u(<u>x</u>) is the state transformation performed by the program on path u
- Notation:
 - \circ $I_m \rightarrow ... \rightarrow I_k$ suffix of the path from index m (from vertex I_m)
 - $\circ R_u^m(\underline{x})$ and $T_u^m(\underline{x})$ refer to these path suffix

Partial correctness for loop-free programs (2)

- It is known that for the end vertex l_k of the path (last path suffix):
 - $\circ R_u^k(\underline{x}) = true$ since the end vertex has been reached
 - $T_u^k(\underline{x}) = \underline{x}$ since there is no further state transformation
- Backward substitution on path u:
 - Assume: $R_u^{m+1}(\underline{x})$ and $T_u^{m+1}(\underline{x})$ are known for a suffix (first: end vertex)
 - Step: Computing $R_u^m(\underline{x})$ and $T_u^m(\underline{x})$ on the basis of the statement at I_m
 - $\underline{x}:=\underline{e}$ assignment: $R_u^{m}(\underline{x}) = R_u^{m+1}(\underline{x})[\underline{e}/\underline{x}],$ $T_u^{m}(\underline{x}) = T_u^{m+1}(\underline{x})[\underline{e}/\underline{x}]$ • $B(\underline{x})$ with true branch: $R_u^{m}(\underline{x}) = R_u^{m+1}(\underline{x}) \wedge B(\underline{x}),$ $T_u^{m}(\underline{x}) = T_u^{m+1}(\underline{x})$ • $B(\underline{x})$ with false branch: $R_u^{m}(\underline{x}) = R_u^{m+1}(\underline{x}) \wedge \neg B(\underline{x}),$ $T_u^{m}(\underline{x}) = T_u^{m+1}(\underline{x})$ • start: $R_u(\underline{x}) = R_u^{0}(\underline{x}),$ $T_u(\underline{x}) = T_u^{0}(\underline{x})$
 - This way R_u(<u>x</u>) and T_u(<u>x</u>) can be computed for the path u by backward substitution

Example for backward substitution

Partial correctness for loop-free programs (3)

Strategy for proving partial correctness: $\{p(\underline{x})\} P \{q(\underline{x})\}$ iff for each complete path u: $\forall \underline{x}: p(\underline{x}) \land R_u(\underline{x}) \Rightarrow q(T_u(\underline{x}))$ verification condition holds

Partial correctness for programs with loops (1)

Idea: Cutting the loops

- In each loop, a vertex l_i is determined which cuts the loop into loop-free segments
- To each cut point l_i, a predicate l_{li}(<u>x</u>), the so-called inductive assertion is assigned
 - It shall be true when first reaching l_i
 - It shall hold when executing the loop (loop invariant)
 - It shall make true the reachability condition of the next segment when exiting the loop, or make true the postcondition at the final vertex
- These segments can be checked as loop-free programs according to the previous strategy
 - Each reachability condition and
 - state transformation can be computed

Partial correctness for programs with loops (2)

Proof strategy:

- Finding (at least one) cut point in each loop
- \circ Assigning inductive assertions: $I_{li}(\underline{x})$
 - For the initial vertex: $I_{I_0}(\underline{x}) = p(\underline{x})$ or $\forall \underline{x}: p(\underline{x}) \Longrightarrow I_{I_0}(\underline{x})$
 - For the final vertex: $I_{I^*}(\underline{x}) = q(\underline{x})$ or $\forall \underline{x}: I_{I^*}(\underline{x}) \Rightarrow q(\underline{x})$
 - In loops: loop invariants as given above
- Verification conditions (to be proven): For each loop-free segment u given by subsequent cut points I and I':

 $\forall \underline{\mathbf{x}} \colon \mathsf{I}_{\mathsf{I}}(\underline{\mathbf{x}}) \land \mathsf{R}_{\mathsf{u}}(\underline{\mathbf{x}}) \Longrightarrow \mathsf{I}_{\mathsf{I}'}(\mathsf{T}_{\mathsf{u}}(\underline{\mathbf{x}}))$

- Here $R_u(\underline{x})$ and $T_u(\underline{x})$ can be computed for the segments
- Correct and complete strategy
 - Cut points and inductive assertions can always be found (the proof is not constructive ⁽³⁾)
 - The assignment of inductive assertions is a heuristic procedure

Example: Inductive assertion (loop invariant)

x/y positive integer division, dividend x, divider y, quotient q, remainder r: $I_{14}(x,y,q,r) = (x \ge 0 \land y \ge 0 \land x = q \cdot y + r \land r \ge 0)$

Proving termination in case of loops (1)

Idea: Parameterized inductive assertions

- The parameter is from a (W, >) well-founded set
 - There is no infinite decreasing $w_0 > w_1 > ...$ sequence of $w_i \in W$
 - Examples for well-founded sets:
 - Natural numbers, with the common > relation
 - Strict subsets of a finite set, with the inclusion relation
 - Finite list, with the prefix relation
- The loop terminates if it can be shown that the parameter decreases in each execution of the loop

 \circ There is no infinite decreasing sequence \rightarrow termination

 The parameter in most cases can be the loop variable, but (computed) auxiliary variables can also be used
 O However, finding parameters is a heuristic procedure

Proving termination in case of loops (2)

- Proof strategy:
 - \circ Finding cut point in each loop: I_i , with I_0 and I_*
 - Finding well-founded set(s) for the cut points: (W,<)
 - \circ Assigning parameterized inductive assertions: $I_{|}(\underline{x}, w)$ where w∈W
 - Verification conditions (to be proven) :
 - At the initial vertex: $\forall \underline{x}: p(\underline{x}) \Rightarrow \exists w: I_{|0}(\underline{x},w)$
 - At the terminal vertex: $\forall \underline{x}: I_{l^*}(\underline{x}, w) \Rightarrow q(\underline{x})$
 - For each loop-free segment u given by subsequent I and I':

 $\forall \underline{x}: \ \mathsf{I}_{\mathsf{I}}(\underline{x}, w) \land \mathsf{R}_{\mathsf{u}}(\underline{x}) \Longrightarrow \exists w' < w: \ \mathsf{I}_{\mathsf{I}'}(\mathsf{T}_{\mathsf{u}}(\underline{x}), w')$

Here $R_u(\underline{x})$ and $T_u(\underline{x})$ can be computed for the segments

- Correct strategy for proving <p(x)> P <true>
 - However, the assignment of parameterized inductive assertions is a heuristic procedure

Example: Parameterized inductive assertion

x/y positive integer division, dividend x, divider y, quotient q, remainder r: $I_{14}(x,y,q,r,n) = (x \ge 0 \land y \ge 0 \land x = q \cdot y + r \land r \ge 0 \land n = r)$, n positive integer

Summary for low-level flow languages

- Partial correctness for loop-free programs
 O Backward computational induction
- Partial correctness for programs with loops
 Inductive assertions
- Correctness for programs with loops: Proving termination
 - Parameterized inductive assertions, with a decreasing parameter from a well-founded set in each loop segment

Outlook: Symbolic execution

Basic idea

- Static program analysis technique
- Basic idea
 - Following computation of paths with symbolic variables
 - Deriving reachability conditions as path constraints
 - Constraint solving (e.g., SMT solver):
 A solution yields an input to execute a given path
- Popular nowadays:
 - Efficient SMT solvers exist
 - Used to generate test inputs for covering given paths
 - Mixing symbolic and concrete execution: "Concolic"

Example for deriving path constraints

Tools for symbolic execution and test generation

Name	Platform	Language	Notes
KLEE	Linux	C (LLVM bitcode)	
Pex	Windows	.NET assembly	VS2015: IntelliTest
SAGE	Windows	x86 binary	Security testing, SaaS model
Jalangi		JavaScript	
Symbolic PathFinder		Java	