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Software Verification and Validation (VIMMD052) 



Typical development steps and V&V tasks 
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Requirement 
analysis 

System 
specification 

Architecture 
design 

Module  
design 

Module 
implementation 

System 
integration 

System  
delivery 

Operation, 
maintenance 

• Checking completeness, consistency, feasibility, verifiability 
• Assuring traceability 

• Trade-off analysis, interface analysis, fault effects analysis 
• Model based quantitative evaluation 

• Formal verification by (temporal logic based) model checking 
• Equivalence checking 

• Source code analysis 
• Proof of program correctness by theorem proving 
• … 



Approach: Theorem proving 
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Motivation 

 Proof of the correctness of critical algorithms 
o Restricted to core functions: safety-critical modules, security related 

algorithms, communication protocols, … 

o Basis for correctness proof: 
• Detailed design: Algorithm given in pseudo-language 

(called in the following as “program”) 

• Real source code: Subset of real programming languages 

 Using a theorem proving approach 
o Property to be verified is a “theorem” to be proven 

• Contract (pre- and post-conditions) can be mapped to theorems:  
A post-condition is satisfied by the program if the preconditions hold  

o Formal reasoning is applied to prove the theorem 

 Challenges: 
o How to derive theorem from a (pseudo) program? 

o What are the efficient proof strategies? 
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Theorem proving systems 

 Parts of theorem proving systems: 
o Deduction system: Description of the problem space 

• Theorem (to be proven): The property to be checked 

• (Logic) axioms: Premise or starting statements for further reasoning 

• Inference rules: Induction, deduction, unification, … 

o Problem description language 

• E.g., first order logic (FOL), FOL extended with types, higher order logic 
(HOL), … 

 Components: 
o Algorithmic: Application of the inference rules 

o Search: Strategy or tactic for selecting inference rules 

• Goal-driven (backward) search 

• Depth-first or breadth-first search 

• Interactive (with hints from the user) 

 Popular theorem proving tools 
o HOL, PVS, ACL2, … 
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Application of theorem proving systems 

 Use cases 
o Theorem proving: Deriving automatically the proof of the theorem 

o Proof checking: Automatic checking of a manual proof 

o Interactive proving: Supporting manual proof steps (application of rules) 

 Typical tasks for theorem proving 
o Verifying data-intensive algorithms (using theories for the data types) 

o Verifying parameter dependency (e.g., number of participants in a protocol) 

• (Mathematical) induction can be used 

o Using together with model checking for parameterized systems 

• Initially, verifying the property for the smallest parameter: model checking 

• Proof of preserving the property when the parameter increases: by induction 

 Automatic theorem proving is a complex task 
o In general, varies from trivial to impossible (depending on the underlying logic) 

o Propositional logic: Decidable, but only exponential-time algorithms are believed 
to exist for general proof tasks 

o It is important to have a good proof strategy 
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Properties of theorem proving systems 

D deduction system, c property (theorem) to be proven 

 Semantic soundness: 
o What can be deduced in D, it is true (it holds) 

o Necessary property for usability 

o Formally: c: if |-Dc  (it can be deduced) then |=c (it holds) 

 Semantic completeness: 
o What is true, that can be deduced in D 

o Useful property, but not always possible 

o Formally: c: if |=c then |-Dc  

 Consistency: 
o It is not possible to deduce a theorem and its opposite 

 Total soundness and completeness: 
o Sound and complete for all interpretation (of variables) 
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Mapping the verification task to theorem proving 

Sources for the parts of deduction systems: 

 For the axioms (= starting statements for reasoning): 
o Program domain axioms (e.g., integer, string, list theories) 

o Program statements (e.g., value assignments) – depending 
on the theorem proving approach 

 For the inference rules: 
o Semantics of the programming language 

o Semantics of the program domain 

 For the theorem to be proven: 
o Program and its specification (pre- and post-conditions) 

 

 What is the proper proof strategy? 
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Inductive strategies for correctness proof 

 Computational induction: Based on operational semantics 

o For states in program paths:  
If the properties of the initial state are known then the properties of 
the terminal state of a program path can be deduced by following the 
semantics of state transitions 

 

 

 Structural induction: Based on axiomatic semantics 

o For syntactic constructs:   
If the properties of components are known  
then the properties of the composite  
constructs can be derived on the basis of  
the semantics of the syntactic composition 

s0 s1 s2 s3 s4 s5 s6 

c0 

c1 e1 

e2 e3 

c2 

e4 
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Goals of this lecture 

 Proposing proof strategies for proving program correctness 

o The proof strategy may require manual steps 

o In general, there is no fully automated efficient proof technique 

 The strategy is not for a concrete programming language 

o Pseudo-languages are used (for algorithm description) 

• In the following, it is called as “programming language” 

o E.g., domain-specific languages may also be supported 

 Assumptions for provability 

o Programming language: Formal semantics is defined 

(operational or axiomatic semantics) 

o Specification language: First order logic 
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Specifying program correctness 
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Programming language with operational semantics 

 “State”: Configuration C(,) 
o   observable state (included in the output of the program) 

• [x] is the value of variable x in observable state  

• [x] is the value of variable vector x in observable state  

o Unobservable (hidden) state (not relevant for correctness) 

o Syntactic continuation : Defines the further computation 

• Analogy: “program counter” 

• Defines the statements to be executed (e.g., in the source code) 

 Transition relation among configurations:  
o (P, 0) is the computation of program P from initial observable state 0 

• C0  C1  C2  … maximal sequence (to the terminal state, or infinite) 

• 0  1  2  …  observable state sequence 

o val((P, )) = n terminal state in case of finite computation 

 Domain I: Computations (variables) are interpreted here 
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Specifying program properties 

 Restrictions for the program: 
o Deterministic 

o Terminating (not continuously operating):  
Performs value (or state) transformation 

 Specification of program properties: Predicates 
o Precondition: p(x) – specifies the allowed initial states 

• x variables in the observable state 

• 0 |= p(x) means: in the initial state p(x) holds 

o Postcondition: q(x) – specifies the acceptable terminal states 
• true  – holds in all terminating computations 

• false  – does not hold in any terminal state 

• val((P,0)) |=  q(x) means: q(x) holds in terminal state of  

 Construction of pre- and postconditions 
o Using (existentially quantified) bound auxiliary variables 

o Using specification variables 
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Examples for specifications (in the integer domain) 

 The program outputs x and y where y is greater than x: 
Precondition p(x,y) = true, postcondition q(x,y) = y>x 

In other form, pre- and postcondition together:  (true, y>x) 

 The program outputs x that is an even number: 
(true, even(x))  if there is a function even(x) in the domain 

(true, y: x=2y)  here y is a bound auxiliary variable in q(x) 

 The program doubles its input x: 
(X=x, x=2X)   here X is a specification variable 

 The program outputs the quotient q and remainder r of the 
positive integer division x/y: 

 (X=x  x>0  Y=y  y>0,   X=qY+r  0<=r<Y) 

If the value of x and y have to be preserved: 

 (X=x  x>0  Y=y  y>0,   X=qY+r  0<=r<Y  x=X  y=Y) 
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Program correctness criteria: Partial correctness 

 Partial correctness: Notation is {p(x)} P {q(x)} 
A program P is partially correct according to p(x) and q(x), 

if the following statement holds:  

(P,0) and 0 |= p(x): 
if  terminates then val((P,0)) |= q(x) 

 Notes: 
o Statement for the computations that start from an initial 

state and satisfy the precondition: if the computation 
terminates, then the postcondition holds in the final state 

o Does not guarantee anything about the computations for 
which 0 | p(x) 

o {true} P {true} holds for all programs 

o If {true} P {false} holds: there is no terminating computation 
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Program correctness criteria: Total correctness 

 (Total) correctness: Notation is <p(x)> P <q(x)> 
Program P is correct according to p(x) and  q(x),  

if the following statement holds: 

(P,0) and 0 |= p(x): 
 terminates and val((P,0) |= q(x) 

 Notes: 
o Statement for the computations that start from an initial 

state and satisfy the precondition: the computation 
terminates and the postcondition holds in the final state 

o <p(x)> P <true> specifies termination only 

o It can be stated:  
<p(x)> P <q(x)> iff {p(x)} P {q(x)} and <p(x)> P <true> 

i.e., the program is correct if partially correct and terminates 
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Proof of correctness  
for simple flow programs 
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Flow language for simple deterministic programs 

 PLF “flow language”: Pseudo-language similar to assembly 
o Statements start, x:=e, B(x), halt    with unique labels l0 (start), l* (halt), li, … 

 Structure of a PLF program: Finite directed graph 
o Vertices: statements;   edges: sequencing of statements 

o Notation: succ(li), and succ+(li), succ-(li) in case of branch give the next vertex 

o All statements are on a  start  halt path 

 Semantics of PLF: Defining C=(,) configuration and  relation: 
C(,)  C’ (’,’) with  as label l iff 
o  is at start:   ’=succ(),    ’= 

o  is at statement x:=e :  ’=succ(),    ’=[e/x] 

             here [e/x] denotes that e replaces x 

o  is at branching condition B(x): 

• If |=B(x) then  ’=succ+(),      ’= 

• If |B(x) then  ’=succ-(),       ’= 
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Example: Integer division 

x/y positive integer division, dividend x, divider y, quotient q, remainder r: 
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Preview of the proof strategies 

 Partial correctness for loop-free programs 

o Approach: Backward computational induction 

 Partial correctness for programs with loops 

o Approach: Inductive assertions 

 Correctness for programs with loops: Proving 
termination 

o Approach: Parameterized inductive assertions 
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Partial correctness for loop-free programs (1) 

 Idea: Computational induction in case of proving {p} P {q} 

 Characteristics of a path u belonging to a finite computation  
u = l0 l1 l2 …  lm … lk 
o Reachability condition: Ru(x) predicate for traversing path u 

• If it holds in case of l0 then the path u is traversed 

o State transformation: Tu(x)  the final state after traversing path u 

• Starting from a state vector x, after traversing u the observable 
final state is Tu(x) 

• In other words: x := Tu(x) is the state transformation performed by 
the program on path u 

 Notation: 

o lm … lk suffix of the path from index m (from vertex lm) 

o Ru
m(x) and Tu

m(x) refer to these path suffix 
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Partial correctness for loop-free programs (2) 

 It is known that for the end vertex lk of the path (last path suffix): 
o Ru

k(x) = true     - since the end vertex has been reached 
o Tu

k(x) = x           - since there is no further state transformation 

 Backward substitution on path u: 
o Assume: Ru

m+1(x) and Tu
m+1(x) are known for a suffix (first: end vertex) 

o Step: Computing Ru
m(x) and Tu

m(x) on the basis of the statement at lm 
• x:=e assignment:  

 Ru
m(x) = Ru

m+1(x)[e/x],   Tu
m(x) = Tu

m+1(x)[e/x] 
• B(x) with true branch:  

 Ru
m(x) = Ru

m+1(x)B(x),   Tu
m(x) = Tu

m+1(x) 
• B(x) with false branch:  

 Ru
m(x) = Ru

m+1(x)B(x),   Tu
m(x) = Tu

m+1(x) 
• start: 

 Ru(x) = Ru
0(x),   Tu

 (x) = Tu
0(x) 

o This way Ru(x) and Tu(x) can be computed for the path u  
by backward substitution 
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Example for backward substitution 

x:=x+1 x>y 

R(x)=true 

T(x)=x 

true 
false 

x:=x+1 x>y 

R(x)=true 

T(x)=x 

R(x)=true(x>y) 

T(x)=x 

true 
false 

x:=x+1 x>y 

R(x)=true 

T(x)=x 

R(x)=true(x>y) 

T(x)=x 

Ru(x)=x+1>y 

Tu(x)=x+1 

true 
false 
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Partial correctness for loop-free programs (3) 

 Strategy for proving partial correctness: 

{p(x)} P {q(x)}   iff  for each complete path u: 

  x: p(x)Ru(x)  q(Tu(x)) verification condition holds 

x: p(x)Ru(x)  q(Tu(x)) 

First order logic expression on the domain; 
can be given to a theorem prover for each path u: 

Ru() and Tu() are derived for each 
path of the program source, 
using backward substitution 

p() and q() are given by 
the specification 
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Partial correctness for programs with loops (1) 

 Idea: Cutting the loops 
o In each loop, a vertex li is determined which 

cuts the loop into loop-free segments 

o To each cut point li, a predicate Ili(x), the  
so-called inductive assertion is assigned 
• It shall be true when first reaching li 

• It shall hold when executing the loop (loop invariant)  

• It shall make true the reachability condition of the 
next segment when exiting the loop, 
or make true the postcondition at the final vertex 

o These segments can be checked as loop-free 
programs according to the previous strategy 
• Each reachability condition and 

• state transformation can be computed 

l1 

l0 

l2 

l* 
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Partial correctness for programs with loops (2) 

 Proof strategy: 
o Finding (at least one) cut point in each loop 
o Assigning inductive assertions: Ili(x) 

• For the initial vertex: Il0
(x) = p(x)  or x: p(x)  Il0

(x) 
• For the final vertex:   Il*(x) = q(x)  or x: Il*(x)  q(x)  
• In loops: loop invariants as given above 

o Verification conditions (to be proven): For each loop-free 
segment u given by subsequent cut points l and l’: 

   x: Il(x)Ru(x)  Il’(Tu(x)) 

• Here Ru(x) and Tu(x) can be computed for the segments 

 Correct and complete strategy 
o Cut points and inductive assertions can always be found 

(the proof is not constructive ) 
o The assignment of inductive assertions is a heuristic procedure 
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Example: Inductive assertion (loop invariant) 

x/y positive integer division, dividend x, divider y, quotient q, remainder r: 
Il4(x,y,q,r) = (x0  y>0  x=qy+r  r0) 
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Proving termination in case of loops (1) 

Idea: Parameterized inductive assertions 

 The parameter is from a (W, >) well-founded set 
o There is no infinite decreasing w0 > w1 >… sequence of wi  W 

o Examples for well-founded sets: 
• Natural numbers, with the common > relation 

• Strict subsets of a finite set, with the inclusion relation 

• Finite list, with the prefix relation 

 The loop terminates if it can be shown that the parameter 
decreases in each execution of the loop 
o There is no infinite decreasing sequence  termination 

 The parameter in most cases can be the loop variable, but 
(computed) auxiliary variables can also be used 
o However, finding parameters is a heuristic procedure 
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Proving termination in case of loops (2) 

 Proof strategy: 
o Finding cut point in each loop: li, with l0 and l* 

o Finding well-founded set(s) for the cut points: (W,<) 
o Assigning parameterized inductive assertions: Il(x,w)  

where wW 
o Verification conditions (to be proven) : 

• At the initial vertex:   x:  p(x)  w: Il0(x,w) 
• At the terminal vertex:   x:  Il*(x,w)  q(x) 
• For each loop-free segment u given by subsequent l and l’: 

  

 x:  Il(x,w)Ru(x)  w’<w: Il’(Tu(x),w’) 
 

Here Ru(x) and Tu(x) can be computed for the segments 

 Correct strategy for proving <p(x)> P <true> 
o However, the assignment of parameterized inductive assertions 

is a heuristic procedure 
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Example: Parameterized inductive assertion 

x/y positive integer division, dividend x, divider y, quotient q, remainder r: 
Il4(x,y,q,r, n) = (x0  y>0  x=qy+r  r0  n=r), n positive integer  
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Summary for low-level flow languages 

 Partial correctness for loop-free programs 

o Backward computational induction 

 Partial correctness for programs with loops 

o Inductive assertions 

 Correctness for programs with loops: Proving 
termination 

o Parameterized inductive assertions, 
with a decreasing parameter from a well-founded set 
in each loop segment 
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Outlook: Symbolic execution 
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Basic idea 

 Static program analysis technique 

 Basic idea 
o Following computation of paths with symbolic 

variables 

o Deriving reachability conditions as path constraints 

o Constraint solving (e.g., SMT solver):  
A solution yields an input to execute a given path 

 Popular nowadays: 
o Efficient SMT solvers exist 

o Used to generate test inputs for covering given paths 

o Mixing symbolic and concrete execution: “Concolic” 
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Example for deriving path constraints 

Path constraint 

Symbolic variables 

Statement ID 

37 



Tools for symbolic execution and test generation 
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Name Platform Language Notes 

KLEE Linux C (LLVM bitcode) 

Pex Windows .NET assembly VS2015: IntelliTest 

SAGE Windows x86 binary Security testing, 
SaaS model 

Jalangi   JavaScript 

Symbolic 
PathFinder 

  Java 


