Software Verification and Validation (VIMMDO052)

Proof of program correctness

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

AT T L
MUEGYETEM 1782

Proof of correctness

for structured programs

Proving correctness for structured programs

" “Composition” of properties:

o If a program P consists of syntactic units ()
P, and P, then the properties of P can be © 5
derived on the basis of the properties

of the syntactic units P, and P, Q) @2
o The principle of structural induction

= Structured programs: PLW language

P::=x:=e | skip | P;; P, | if Bthen P, else P, fi | while B do P od

= Example (positive integer division):
Pyiy: r:=X; q:=0; while r=y do r:=r-y; q:=q+1 od

Operational semantics of PLW

= Configuration: C=(P,, ;) where
o P. is the syntactic continuation (E denotes empty cont.)

o G, is the observable state (variables) Here EP=p |

is applied at
the end

= Transition relation: C —> C’
o (x:=e, o) — (E, o[e/x])

)

o (skip, o) — (E, o)

o (P,; P,,) —>(P/; P, o) if (P, c) > (P, &)
o (if B then P, else P, fi,) — (P, o) if 6[B]=true
— (P,, o) if [B]=false
o (while B do P od, o) — (P; while B do P od, o) if o[B]=true
— (E, o) if o[B]=false

D deduction system for proving partial correctness (1)

= Axioms: p holds as postcondition,
o ASS: {ple/x]} x:=e {p} if p[e/x] holds as precondition

o SKIP: {p} skip {p} R

. Rule format:

= Rules for the syntactic constructs: Condition
Consequence/

o SEQ: {p} P, {r} and {r}P,{q}
{p} Py P,1{a}

o COND: {pAB} P, {q} and {pA—B} P, {q}
{p}if B then P, else P, fi {q}

pisaloop
o REP: {PAB} P {p} %invariant J

{p} while B do P od {p A—B}

D deduction system for proving partial correctness (2)

Strengthening
= General rules: precondition

and weakening

o CONS: p=p, and {p;} P {qg,} and q;=q¢ %tco”d‘“o” /
{p} Pa}

.
S ted f
OAND: {p}P{a;} and {p}P {a,} = oftomuncive
{p} P{a; A q,} postcondition

oOR: {p;}P{a} and {p,}P{a} ——
eparating cases
{pl Vv pz} P {OI} of disjunctive
precondition

= Domain axioms and rules:

To be included in the deduction system

Example: Proving partial correctness

{x>0Ay=>0} r:=x; q:=0; while r>y do r:=r-y; g:=g+1 od {x=q-y+r A 0<r<y}

w o =

10.
110

I S

‘ cy+axANx>20}qg:=0{r=q-y+xAzxz>0}(ASS)
r=q-y+rxANx>20}r:=x{r=q-y+rAr >0} (ASS)
x cy+x Az >20}tg:=0r:=x{z=q-y+rAr >0} (1)Q2)(SEQ)

r>0Ay>0=2=0-y+x Ax > 0(ARITHMETIC)

{:
{:
{
T
{lt >20Ay>20}q:=0;r=xz{z=q-y+r Ar >0} (3)(4)(CONS)
{r=(g+1)-y+r—yAr—y>20ri=r—yf{z=(@+1)-y+rAr >0} (ASS)
{:

{:

(

T

{

I\J

r=(q+1)-y+rAr>20}lq:=q+1{z=q-y+rAr >0} (ASS)
c=(qg+1)-y+r—yAr—y20r=r—-yq=q+1{z=q-y+rAr > 0}
6)(/)(SEQ)
=q-y+rAr>20Ar>2y=x=(@+1)-y+r—yAr—y>0(ARITHMETIC)
r=q-y+rAr>20Ar>2ytr:=r—y,q:=q+1{x=q-y+rAr > 0} (8)(9)(CONS)
{r =q-y+rAr>0}whiler>ydor:=r—y;qg:=¢g+1lod{z=q-y+rA0 <r <y}
(10)(REP)
> 0Ay 20} g=0r:=x;whiler >2ydor:=r—y;9g:=q+1o0od{z =
q-y+rA0<r <y} (5)(11)(SEQ)

D* deduction system for proving correctness

= Goal: Proving termination of loops
o while B do P od constructs

= Basic idea: Parametric assertions
o Parameters from well-founded set
o E.g., selecting n natural number: arithmetic extension of

the specification language is needed

Loop

o pi(x,n) parameterized loop invariant invariant,

= Modified REP rules for proving correctness:

o REP*:

decreases n

pi(x,n)=B and <pi(x,n)>P<pi(x,n-1)> and pi(x,0) =—B

<dn:pi(x,n)> while B do P od <pi(x,0)>

o All other rules are the same, writing <...> instead of {...}

Properties of the deduction system

= Notation for the proof of a statement C: Tr, [-; C where
o | domain, Tr,the axioms and deduction rules of the domain
o D the deduction system

= Properties:
o The correctness of D defined above can be proven
* Tr, |-p {p}P{q} results in |= {p}P{q}
o The completeness of D cannot be proven:

* If the axioms and rules of the domain are complex enough (e.g., contain
the arithmetic of natural numbers): Godel's first incompleteness
theorem holds, i.e., there are statements that are not provable

= Practical implementation:

o The semantics of the programming language (syntactic constructs) have to
be mapped to axioms and rules

o The theorem prover shall include the axioms and rules of the domain
o Strategy (or search) is needed for selecting proper domain rules
o The specification language shall be expressive enough

= For low-level flow languages:
o Partial correctness for loop-free programs
* Backward computational induction
o Partial correctness for programs with loops
* Inductive assertions
o Correctness for programs with loops: Proving termination

* Inductive assertions with a decreasing parameter from a
well-founded set

= Structured languages (while programs):
o Partial correctness:
* Deduction system with structural induction
o Correctness:

* Deduction system with parameterized inductive assertions
* Arithmetic extension to have a well-founded set

Proving program correctness in practice

Classic examples:

= SpecH# Programming System: C# extension
o Preconditions, postconditions (for methods) can be specified
o Object level invariants (e.g., ranges for variables) can be given
o Boogie2: To prove postconditions in an automated way

= JML: Java Modelling Language
o Preconditions, postconditions, invariants can be specified
o ESC/Java2: Proof of postconditions for a JIML subset

= SPARK: Ada language subset

o Proof by using an interactive theorem prover

= B method: Specific modelling language and approach

o B4Free, Rodin: The derivation of verification conditions (to be proven) and
theorem proving are automated (with some manual support)

o Focus: Consistent refinement of a specification

