
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Proof of program correctness

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Proof of correctness
for structured programs

2

Proving correctness for structured programs

 “Composition” of properties:

o If a program P consists of syntactic units
P1 and P2 then the properties of P can be
derived on the basis of the properties
of the syntactic units P1 and P2

o The principle of structural induction

 Structured programs: PLW language

P::= x:=e | skip | P1; P2 | if B then P1 else P2 fi | while B do P od

 Example (positive integer division):
 Pdiv: r:=x; q:=0; while ry do r:=r-y; q:=q+1 od

3

P

P1

Q1 Q2

P2

R1

Operational semantics of PLW

 Configuration: Ci=(Pi, i) where

o Pi is the syntactic continuation (E denotes empty cont.)

o i is the observable state (variables)

 Transition relation: C  C’

o (x:=e, )  (E, [e/x])

o (skip, )  (E, )

o (P1; P2, )  (P1’; P2, ’) if (P1, )  (P1’, ’)

o (if B then P1 else P2 fi, )  (P1, ) if [B]=true
  (P2, ) if [B]=false

o (while B do P od, )  (P; while B do P od, ) if [B]=true
  (E, ) if [B]=false

Here E;P  P
is applied at
the end

4

D deduction system for proving partial correctness (1)

 Axioms:
o ASS: {p[e/x]} x:=e {p}

o SKIP: {p} skip {p}

 Rules for the syntactic constructs:

o SEQ: {p} P1 {r} and {r} P2 {q}

 {p} P1; P2 {q}

o COND: {pB} P1 {q} and {pB} P2 {q}

 {p} if B then P1 else P2 fi {q}

o REP: {pB} P {p}

 {p} while B do P od {p B}

Rule format:

Condition
Consequence

p holds as postcondition,
if p[e/x] holds as precondition

p is a loop
invariant

5

D deduction system for proving partial correctness (2)

 General rules:

o CONS: pp1 and {p1} P {q1} and q1q

 {p} P {q}

o AND: {p} P {q1} and {p} P {q2}

 {p} P {q1  q2}

o OR: {p1} P {q} and {p2} P {q}

 {p1  p2} P {q}

 Domain axioms and rules:
To be included in the deduction system

Strengthening
precondition
and weakening
postcondition

Separated proof
of conjunctive
postcondition

Separating cases
of disjunctive
precondition

6

Example: Proving partial correctness

{x0y0} r:=x; q:=0; while ry do r:=r-y; q:=q+1 od {x=qy+r  0r<y}

7

D* deduction system for proving correctness

 Goal: Proving termination of loops
o while B do P od constructs

 Basic idea: Parametric assertions
o Parameters from well-founded set

o E.g., selecting n natural number: arithmetic extension of
the specification language is needed

o pi(x,n) parameterized loop invariant

 Modified REP rules for proving correctness:

o REP*: pi(x,n)B and <pi(x,n)>P<pi(x,n-1)> and pi(x,0) B

 <n:pi(x,n)> while B do P od <pi(x,0)>

o All other rules are the same, writing <…> instead of {…}

8

Loop
invariant,
decreases n

Properties of the deduction system

 Notation for the proof of a statement C: TrI |-D C where
o I domain, TrI the axioms and deduction rules of the domain

o D the deduction system

 Properties:
o The correctness of D defined above can be proven

• TrI |-D {p}P{q} results in |=I {p}P{q}

o The completeness of D cannot be proven:

• If the axioms and rules of the domain are complex enough (e.g., contain
the arithmetic of natural numbers): Gödel's first incompleteness
theorem holds, i.e., there are statements that are not provable

 Practical implementation:
o The semantics of the programming language (syntactic constructs) have to

be mapped to axioms and rules

o The theorem prover shall include the axioms and rules of the domain

o Strategy (or search) is needed for selecting proper domain rules

o The specification language shall be expressive enough

9

Summary

 For low-level flow languages:
o Partial correctness for loop-free programs

• Backward computational induction

o Partial correctness for programs with loops
• Inductive assertions

o Correctness for programs with loops: Proving termination
• Inductive assertions with a decreasing parameter from a

well-founded set

 Structured languages (while programs):
o Partial correctness:

• Deduction system with structural induction

o Correctness:
• Deduction system with parameterized inductive assertions
• Arithmetic extension to have a well-founded set

17

Proving program correctness in practice

Classic examples:

 Spec# Programming System: C# extension
o Preconditions, postconditions (for methods) can be specified

o Object level invariants (e.g., ranges for variables) can be given

o Boogie2: To prove postconditions in an automated way

 JML: Java Modelling Language
o Preconditions, postconditions, invariants can be specified

o ESC/Java2: Proof of postconditions for a JML subset

 SPARK: Ada language subset
o Proof by using an interactive theorem prover

 B method: Specific modelling language and approach
o B4Free, Rodin: The derivation of verification conditions (to be proven) and

theorem proving are automated (with some manual support)

o Focus: Consistent refinement of a specification

18

