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Proving correctness for structured programs 

 “Composition” of properties:  

o If a program P consists of syntactic units  
P1 and P2 then the properties of P can be  
derived on the basis of the properties  
of the syntactic units P1 and P2 

o The principle of structural induction 

 Structured programs: PLW language 

P::= x:=e | skip | P1; P2 | if B then P1 else P2 fi |  while B do P od 

 Example (positive integer division):  
        Pdiv:  r:=x; q:=0; while ry do r:=r-y; q:=q+1 od 
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Operational semantics of PLW 

 Configuration: Ci=(Pi, i) where 

o Pi is the syntactic continuation (E denotes empty cont.) 

o i is the observable state (variables) 

 Transition relation: C  C’ 

o (x:=e, )     (E, [e/x]) 

o (skip, )     (E, ) 

o (P1; P2, )   (P1’; P2, ’)  if (P1, )  (P1’, ’) 

o (if B then P1 else P2 fi, )  (P1, ) if [B]=true 
                      (P2, ) if [B]=false 

o (while B do P od, )  (P; while B do P od, ) if [B]=true 
              (E, )                               if [B]=false 

Here E;P  P 
is applied at 
the end 
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D deduction system for proving partial correctness (1) 

 Axioms: 
o ASS:         {p[e/x]} x:=e {p} 

o SKIP:        {p} skip {p} 

 Rules for the syntactic constructs: 

o SEQ:         {p} P1 {r}  and  {r} P2 {q} 

                          {p} P1; P2 {q} 

o COND:       {pB} P1 {q}   and  {pB} P2 {q}  

                     {p} if B then P1 else P2 fi {q} 

o REP:                         {pB} P {p} 

                   {p} while B do P od {p B} 

Rule format: 

Condition 
Consequence 

p holds as postcondition,  
if p[e/x] holds as precondition 

p is a loop 
invariant 
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D deduction system for proving partial correctness (2) 

 General rules: 

o CONS:     pp1  and {p1} P {q1}  and q1q 

                                  {p} P {q} 

o AND:         {p} P {q1}   and   {p} P {q2}  

                         {p} P {q1  q2} 

o OR:        {p1} P {q}   and   {p2} P {q}  

                       {p1  p2} P {q} 

 Domain axioms and rules: 
To be included in the deduction system 

Strengthening  
precondition 
and weakening 
postcondition 

Separated proof 
of conjunctive 
postcondition 

Separating cases 
of disjunctive 
precondition 
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Example: Proving partial correctness 

{x0y0} r:=x; q:=0; while ry do r:=r-y; q:=q+1 od {x=qy+r  0r<y} 
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D* deduction system for proving correctness 

 Goal: Proving termination of loops 
o while B do P od constructs 

 Basic idea: Parametric assertions 
o Parameters from well-founded set 

o E.g., selecting n natural number: arithmetic extension of 
the specification language is needed 

o pi(x,n) parameterized loop invariant  

 Modified REP rules for proving correctness: 

o REP*:      pi(x,n)B  and <pi(x,n)>P<pi(x,n-1)> and pi(x,0) B 

                       <n:pi(x,n)> while B do P od <pi(x,0)> 

 

o All other rules are the same, writing <…> instead of {…} 
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Properties of the deduction system 

 Notation for the proof of a statement C:  TrI |-D C  where 
o I domain, TrI the axioms and deduction rules of the domain 

o D the deduction system 

 Properties: 
o The correctness of D defined above can be proven 

• TrI |-D {p}P{q} results in |=I {p}P{q} 

o The completeness of D cannot be proven: 

• If the axioms and rules of the domain are complex enough (e.g., contain 
the arithmetic of natural numbers):  Gödel's first incompleteness 
theorem holds, i.e., there are statements that are not provable 

 Practical implementation: 
o The semantics of the programming language (syntactic constructs) have to 

be mapped to axioms and rules 

o The theorem prover shall include the axioms and rules of the domain 

o Strategy (or search) is needed for selecting proper domain rules 

o The specification language shall be expressive enough 
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Summary 

 For low-level flow languages: 
o Partial correctness for loop-free programs 

• Backward computational induction 

o Partial correctness for programs with loops 
• Inductive assertions 

o Correctness for programs with loops: Proving termination 
• Inductive assertions with a decreasing parameter from a 

well-founded set 

 Structured languages (while programs): 
o Partial correctness: 

• Deduction system with structural induction 

o Correctness: 
• Deduction system with parameterized inductive assertions 
• Arithmetic extension to have a well-founded set 
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Proving program correctness in practice 

Classic examples: 

 Spec# Programming System: C# extension 
o Preconditions, postconditions (for methods) can be specified 

o Object level invariants (e.g., ranges for variables) can be given 

o Boogie2: To prove postconditions in an automated way 

 JML: Java Modelling Language 
o Preconditions, postconditions, invariants can be specified 

o ESC/Java2: Proof of postconditions for a JML subset 

 SPARK: Ada language subset 
o Proof by using an interactive theorem prover 

 B method: Specific modelling language and approach 
o B4Free, Rodin: The derivation of verification conditions (to be proven) and 

theorem proving are automated (with some manual support) 

o Focus: Consistent refinement of a specification 
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