
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Integration testing, system testing,
validation testing

Istvan Majzik
majzik@mit.bme.hu

Software Verification and Validation (VIMMD052)

1

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

• Checking completeness, consistency, feasibility, verifiability
• Assuring traceability

• Trade-off analysis, interface analysis, fault effects analysis
• Model based quantitative evaluation

• Formal verification by (temporal logic based) model checking
• Equivalence checking

• Source code analysis
• Software model checking with abstraction
• Proof of program correctness by theorem proving
• Module (component) testing

2

• Integration testing
• System testing

• Validation testing

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

3

Integration testing

4

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

5

Software integration testing

Software integration
test plan

Software quality
assurance plan

Software construction
design

Software integration
test report

Software architecture
design

Software integration
testing

6

Goals, methods and approaches

 Goal and motivation:

o Testing the interactions of modules

o The system-level interaction of modules may be incorrect
despite the fact that all modules are correct

 Methods: Testing interaction scenarios
o Sometimes the scenarios are part of the specification

o Systematic testing: Covering all / representative scenarios

o The concept of equivalence partitions and boundary values
applied for interactions (scenario / input data level)

 Approaches
o “Big bang” testing: integration of all modules before testing

o Incremental testing: stepwise integration + testing

7

“Big bang” testing

 Integration of all modules then testing
using the external interfaces of the integrated system

 External test driver

 Based of the functional specification of the system

 To be applied only in case of small systems

8

D

C

Tester1

A

B

Error in this component:
Debugging is difficult!

Incremental integration and testing

 Applied in case of complex systems

 Adapted to module hierarchy (calling levels)

9

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

A3 A31 A311 A312 A

Module testing: Isolation of modules

 Modules are tested in isolation

 Test drivers and test doubles (used for substitution w.r.t dependencies)

 Dependency: Anything collaborating with the SUT (does not belong to it)

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test
driver

Module to be
tested

Test
double

Test
double

Test
double

10

General problem: Handling dependencies

 Several approaches for substituting dependencies
o Isolation frameworks (e.g., Mockito, JMock, …)

o Test double: Generic name of substitute

 Stub
o Predefined replies to calls

o Checking the state of the SUT

 Mock
o Expected and checked behavior

o Checking the interactions of the SUT
(number of calls, with parameters …)

 Dummy

o Not used component (just “filler”)

 Fake

o Working component, but not the real one

11

Top-down integration testing

 Modules are tested from the caller modules

 Stubs replace the lower-level modules that are called

 Requirement-oriented testing

 Module modification: modifies the testing of lower levels

12

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Tested module:
test driver

Module
to be tested

Test
stub

Test
stub

Test
stub

Bottom-up integration testing

 Modules use already tested modules

 Test executor is needed

 Testing is performed in parallel with integration

 Module modification: modifies the testing of upper levels
A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test
driver

Module
to be tested

Tested
module

Tested
module

Tested
module

13

Top down vs. bottom up testing

 Top down

+ Requirement oriented

+ Working “skeleton” is available and tested early

- Harder to create stubs than drivers

 Bottom up

+ Integration oriented, more constructive

+ Easier to control and observe the subsystems

- System is assembled only at the end

14

Functional integration

 Motivation:
o There are several system-level functions

o Priorities among these regarding criticality
 prioritizing testing

 Basic idea:
o Integration on the basis of system functions

o Each function is integrated and tested in a top-down way

 Specific case of top-down integration testing
o Requirement oriented (w.r.t. the given function)

o Test doubles (stubs) are needed

o Top level is tested with more and more functions

o Module modification: modifies the testing of lower levels

15

Integration with the runtime environment

 Motivation:

o It is hard to construct stubs for the runtime environment

o See e.g., platform services, RT-OS, task scheduler, …

 Strategy:

1. Top-down integration of the application modules
down to the level of the runtime environment

2. Bottom-up testing of the runtime environment

• Isolation testing of functions (if necessary)

• Testing with the lowest level of the application module hierarchy

3. Integration of the application with the runtime
environment, finishing top-down integration

16

Coverage metrics: State based approach

 Goal: Coverage of interactions among modules
o Basic case: Coverage of interface functions (by calls)

 State based coverage metrics:
o Coverage of interface functions for all relevant states

(or transitions) of the caller and the called module

o Extension: With all triggers and conditions for the call

18

opB2() call can be served by
two transitions of comp. B

Coverage metrics: Data flow based approach

 Data flow based metrics:
o Coverage extended for coupling paths

(among function calls and returns)
• Applying def-use labels

o Coverage metrics:
• All-coupling-defs

• all-coupling-uses

• all-coupling-paths

 Testing robustness of interfaces
o Extreme and boundary values of call

parameters

o Mutating call scenarios (omission,
duplication, change of ordering,
extreme parameters etc.)

19

System testing

20

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

21

System testing

Testing on the basis of the system specification

 Characteristics:
o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties

 Testing aspects:
o User workload (according to user profile)

o Checking application conditions of the system
(resource usage, saturation)

o Testing fault handling

o Data integrity

o … (depending on the system specification)

22

Types of system tests (examples)

23

Performance testing

Configuration testing

Concurrency testing

Stress testing

Reliability testing

Tester

Failover testing

• Checking saturation effects

• Real workload
• Response times

• Hardware and software settings

• Increasing the number of users
• Checking deadlock, livelock

• Checking the effects of faults

• Checking the use of redundancy
 by failover/failback

Validation testing

24

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

25

Software validation

Software validation

System requirements
specification

Software requirements
specification

Software validation
test report

Software requirements
test specification

Software validation
plan

Software validation
report

26

Validation testing

 Goal: Testing in real environment
o User requirements and expectations are taken into account

o Non-specified expectations may come up

o Reaction to unexpected inputs/conditions is checked

o Events of low probability may appear

 Timing aspects
o Constraints and conditions of the real environment

o Real-time testing and monitoring is needed

 Environment simulation
o If given situations cannot be tested in a real environment

(e.g., protection systems)

o Simulators shall be validated somehow

27

Summary: Testing levels

1. Module (unit) testing
o Isolation testing

2. Integration testing
o (”Big bang” testing)
o Top-down testing
o Bottom-up testing
o Functional integration
o Integration with the runtime environment

3. System testing
o Testing the integrated system

4. Validation testing
o Testing user expectations in the real environment
o Environment simulation

28

Design and documentation of testing

29

Standard test documentation (IEEE 829:1998)

Standard for Software Test Documentation
Test planning:
 Test Plan: What is tested, by whom, how, in what time frame, to what quality

SPACEDIRT: Scope, People, Approach, Criteria, Environment, Deliverables, Incidentals,
Risks, Tasks

Test specification:
 Test Design Specifications: Test conditions, expected outcome,

what is a successful test

 Test Case Specifications: The specific test data (test suites)

 Test Procedure Specifications: What kind of physical set-up is required, how the tester
runs the test, what steps need to be followed

Test reporting
 Test Item Transmittal Report: When specific tested items are passed from one stage of

testing to another

 Test Log: What tests cases were run, by whom, in what order, and whether individual
tests were passed or failed

 Test Incident Report: Details of test failure (when, why)

 Test Summary Report: Assessment about the quality of the system

30

Standard test documentation (IEEE 829:2008)

Standard for Software and System Test Documentation

Test planning:

 Master Test Plan (MTP): Overall test planning for multiple levels

 Level Test Plans (LTP): Scope, approach, resources, and schedule of the testing

Test design:

 Level Test Design (LTD): Test cases, the expected results, the test pass criteria

 Level Test Case (LTC): Specifying the test data for use in running the test cases

 Level Test Procedure (LTPr): How to run each test (preconditions and the steps)

Test reporting:

 Level Test Log (LTL): Record of relevant details about the execution

 Anomaly Report (AR): Events that occur during testing and require investigation

 Level Interim Test Status Report (LITSR): Summarize/evaluate interim results

 Level Test Report (LTR): Summarize/evaluate the results after test execution has finished
for the specific test level

 Master Test Report (MTR): Summarize/evaluate the results of the levels

31

U2TP: UML 2 Testing Profile (OMG, 2004)

 Able to capture all needed information for functional black-box
testing (specification of test artifacts)
o With mapping rules to TTCN-3, JUnit

 Language (notation) and not a method (how to test)

Packages (concept groups):
 Test Architecture

o Components and relationship involved in test
o Importing the UML design model of the SUT

 Test Data
o Data structures and values to be processed in a test

 Test Behavior
o Activities and observations during testing

 Time Concepts
o Timer (start, stop, read, timeout), TimeZone (synchronized)

32

U2TP Test Architecture package

Identification of main components:
 SUT: System Under Test

o Characterized by interfaces to control and observation

o Can be: System, subsystem, component, object

 Test Component: Part of the test system (e.g., a simulator)
o Realizes the behavior of a test case

(Test Stimulus, Test Observation, Validation Action, Log Action)

 Test Context: Collaboration of test architecture elements
o Initial test configuration (test components)

o Test control (decision on execution, e.g., if a test fails)

 Scheduler: Controls the execution of test components
o Creation and destruction of test components

 Arbiter: Calculation of final test results
o E.g., threshold on the basis of test component verdicts

33

U2TP Test Architecture example

34

U2TP Test Data package

 Identification of types and values for test
(e.g., sent and received data)
o Wildcards (* or ?) can be used

o Test Parameter
• Stimulus and observation

o Argument
• Concrete physical value

o Data Partition: Equivalence class for a given type
• Class of physical values, e.g., valid names

o Data Selector: Retrieving data out of a data pool
• Operating on contained values or value sets

o Templates

35

U2TP Test Data example

36

U2TP Test Behavior package

 Specification of default/expected behavior

 Identification of behavioral elements:
o Test Stimulus: Test data sent to SUT

o Test Observation: Reactions from the SUT

o Verdict: Pass, fail, error, or inconclusive

o Actions: Validation Action (inform Arbiter), Log Action

 Test Case: Specifies one case to test the SUT
o Test Objective: Named element

o Test Trace: Result of test execution
• Messages exchanged

o Verdict

37

U2TP Test Behavior example

38

Example: BlueTooth roaming

System under test:

Test objective:
 Slave Roaming Layer functionality

o Monitoring link quality

o Connecting to a different master

39

Example: Components

Test package

Test context Overview

40

Example: Test configuration and control

Test configuration Test control

41

Example:
Test scenario

Test case
implementa-
tion
(see Blue-
ToothSuite)

• References
• Timers
• Defaults

42

Test scenarios (details)

Sequence diagrams

Default behaviors specified
to catch the observations
that lead to verdicts
• Here: Processing timer events

43

