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Typical development steps and V&V tasks 

Requirement 
analysis 

System 
specification 

Architecture 
design 

Module  
design 

Module 
implementation 

System 
integration 

System  
delivery 

Operation, 
maintenance 

• Checking completeness, consistency, feasibility, verifiability 
• Assuring traceability 

• Trade-off analysis, interface analysis, fault effects analysis 
• Model based quantitative evaluation 

• Formal verification by (temporal logic based) model checking 
• Equivalence checking 

• Source code analysis 
• Software model checking with abstraction 
• Proof of program correctness by theorem proving 
• Module testing (unit testing)  model based techniques 
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Overview 

 Introduction 
o The role of models in testing 
o Use cases for model based testing 

 Test case generation for test coverage metrics 
o Using graph-based (direct) algorithms 
o Using model checkers 
o Using bounded model checkers 

 Test case generation on the basis of mutations 
o Model mutations 

 Conformance and refinement relations for testing 
o May and must preorder, IOCO 

+ Tools for model based test case generation 
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Introduction 
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Common practice: UML models in manual testing 

 Use case diagrams: 
o Validation (acceptance) testing: Covering use cases 

 Class and object diagrams 
o Module testing: Identifying sw components, interfaces 

 State machine and activity diagrams: 
o Module testing: Reference for structure based testing 

 Sequence and collaboration diagrams: 
o Integration testing: Identifying scenarios 

 Component diagram: 
o System testing: Identifying physical components 

 Deployment diagram: 
o System testing: Designing test configuration 
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Model based test case generation: Typical approach 

Test cases on the basis of the specification 

Design model  
(specification) 

Formal verification 
(e.g., model checking) 

Implementation 

Test cases 

Manual coding 

Test case generation 

Automated 
code generation 
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Use cases for model based testing 

 In case of manual coding: Conformance checking 

 

 

 

 

 In case of automated code generation: Validation 

Model 

Implementation 

Abstract test cases 

Concrete test cases 

manual 
coding 

test generation 

mapping 
automated 
testing 

Model 

Implementation 

Abstract test cases 

Concrete test cases 

code 
generation 

test generation 

mapping 
manual  
evaluation 

validation 
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Basic tasks for model based testing (MBT) 

 Based on the model and the test criteria: 

o Test case generation (for coverage or behavior conformance) 

o Test oracle generation (synthesis)  

o Test coverage analysis (for the model) 

o Conformance verdict (between model and implementation) 

Test criteria 

Test case 
generation 

Model 

Test oracle 
Coverage Conformance 

Implementation 

Test cases 
Testing 

10 



Example open source tool: GraphWalker 
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 Input: Finite state machine modell + simple guards 

 Output: Tests for state and transition coverage 

 + Generating JUnit test stubs (adapter) 

 Traversing the graph: random walk, graph based search, shortest path 

Source: GraphWalker 

http://graphwalker.github.io/introduction/


Example industrial MBT tool: Conformiq 

 Input: State machine models + Java action code 

 Output: Tests for state, transition, requirement coverage 

 Integration with other tools for testing 
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Overview of algorithms for model based test generation 

 Graph-based algorithms 
o Model represented as a graph + traversal/search in this graph 

 Application of model checkers 
o Counterexample is a test sequence for specified coverage 
o Symbolic or bounded model checkers 

 Mutation based test generation algorithms 
o Test goal: Detect model mutations  detect code bugs 

 Planner based methods 
o The planner constructs an operation sequence for a test goal 

 Evolutionary algorithms (e.g., genetic algorithms) 
o Modifying an initial test suite generated by random walk 
o Optimization: increase coverage, reduce test length, … 

 Symbolic execution 
o Control flow automata model 

14 



Graph-based algorithms for test 
generation 
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Typical applications of graph-based algorithms 

 Model: Represents state based, event driven behavior 
o Transitions triggered by input events 

o Actions are given as outputs 

 Basic formalisms: 
o Finite state automata (FSM; Mealy, Moore, …) 

o Higher level formalisms mapped to automata (UML statecharts, SCADE Safe 
Statechart, Simulink Stateflow, …) 

 Typical applications 
o User interfaces, web based applications 

o Embedded controllers 

o Communication protocols 

 Graph based algorithms 
o Different algorithms for various testing tasks and test criteria 

o Generating optimal test suite: Typically NP-complete 
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Graph-based algorithm for transition coverage 

 Mapping the problem 
o Testing problem: Coverage of transitions 

• All transitions shall be covered by a test sequence 

• The test sequence shall go back to the initial state 

o Graph-based problem: ”New York street sweeper” problem 

• In a directed graph, find the (shortest) path that covers all transitions and goes 
back to the initial state 

• (The same problem in undirected graphs: ”Chinese postman” problem) 

 Basic idea for the algorithm: Euler-graph  Euler-circuit 
o Computing the polarity of vertices: nr. of incoming minus outgoing edges 

o Duplicating edges that lead from a vertex with positive polarity to vertex 
with negative polarity, until all edges have zero polarity 

o Finding an Euler-circuit in the resulting graph (linear algorithm) 

• Euler-circuit: All edges are covered, it can always be constructed in such graph 

o The traversal of the Euler-circuit defines the test sequence 
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Example: Transition coverage 

Original graph with 
polarities of vertices 

Sequence for traversal (Euler-circuit): 

  a b c b f e g d e g 

Graph with duplicated edges 

(this way having an Euler-graph) 
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Graph-based algorithm for covering transition pairs 

 Mapping the problem 
o Testing problem: Coverage of transition sequences 

• All possible sequences of n subsequent transitions shall 
be covered by a test sequence 

• The test sequence shall go back to the initial state 

• Simplest case: Covering all transition pairs 

o Graph-based problem: “Safecracker” sequence 

• Find the (shortest) edge sequence that includes all possible sequences of n 
subsequent edges (simplest case: n=2) 

 Basic idea of the algorithm for n=2 (de Bruijn algorithm): 
o Constructing a dual graph 

• Edges of the original graph are mapped to vertices 

• If there is a pair of subsequent edges in the original graph then an edge is drawn 
in the dual graph between the vertices that represent these edges 

o Forming an Euler-graph (by duplicating edges) from the dual graph 

o Finding an Euler-circuit that defines the test sequence 
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Example: Covering transition pairs 

Original graph 

Sequence for traversal that cover all transition pairs: 

  a b c b f e c b g d e f e g 

Dual graph with edges representing 
edge pairs in the original graph 
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Graph-based algorithm for concurrent testing 

 Mapping the problem 
o Testing problem: Covering all transitions by concurrent testers 

• Goal is complete transition coverage 

• There are several testers that share (preferably equally)  
the testing task to finish it in the shortest time 

• All testers start in the initial state 

• Condition: The tested system shall be resetable to the initial state 

o Graph-based problems: ”Street sweepers brigade” problem 

 Solution with heuristics (not an optimal solution) 
o Giving an upper limit k of the length of the test sequence for each tester 

o Generating an edge sequence in the Euler-graph that contains the highest 
number of edges that were not covered yet, and consists of at most k edges 

o Generating additional test sequences until uncovered edge exists 

o Trying to lower the limit k until the number of testers can be increased  

21 



Example for concurrent transition coverage 

Original test sequence (Euler-circuit, for 1 tester): 
  a b c b f e g d e g 
A potential set of concurrent test sequences (k=7): 

o Tester 1:  a b c b f e g 
o Tester 2:  d e g 

 A better set of concurrent test sequences (k=5): 
o Tester 1:  a b c b g 
o Tester 2:  d e f e g 

22 



Test generation by model checking 
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Basic idea 

 Typical test coverage criteria (for the model): 
o Control flow based:  

• State coverage, transition coverage 

• Incoming-outgoing transition pairs coverage (for all states) 

o Data flow based:  
• Variable definition and usage coverage (for all variables) 

 Required for test generation: 
o Traversal of the state space  Model checker can perform it 

 Basic idea: 
o Let the model checker traverse the state space 

o Let control the model checker in such a way that the counter-
examples generated by the model checker form test sequences 

o Proper requirements (temporal logic properties to be checked) 
are needed – depending on the coverage criteria 
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PowerOff 

LineOk 

LineWeak 

Ready 

keyNo 

keyYes 

Error 

3. The counterexample generated 

by the model checker demonstrates 

that the given state can be reached  

4. The counterexample is a test 

sequence covering the state 

LineWeak 

Basic idea: Using a model checker for test generation 

2.Specifying property for the 

model checker: The state 

LineWeak cannot be reached:  

 EF LineWeak 

1. Test sequence to be generated: 

Coverage of the state LineWeak 
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Formal model 

 

 Engineering 
model 

 Test coverage 
criteria 

Model 
checker 

 Set of TL formula 

 Counterexamples 
as test sequences 

Framework for automated test generation 
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UML 
statechart 

 Test coverage 
criteria 

 
SPIN model 

checker 
 

 LTL formula 

  
PROMELA 

model 
 

 XML based 
test sequences 

A possible implementation of the framework 
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Representing test coverage criteria by TL formula 

 Labels in the model for variable v (predicates): 
o def(v) 

o c-use(v) 

o p-use(v) 

o implicit-use(v) 

 Characteristic functions (with state variables): 
o s: being in state s 

o t: executing a given transition t (reaching the target state from 
the source state) 

 State sets ( represented by characteristic functions): 
o d(v): all def(v) 

o u(v): all c-use(v) or p-use(v) 

o im-u(v): all implicit-use(v) 

o start: state for starting new test (e.g., initial state) 

Using the variable in condition for an 
implicit transition 
Implicit transition: The state does not 
change if the condition of the implicit 
transition holds 
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Formula for control flow based coverage criteria 

 State coverage: 
{EF s |  s basic state} 

  

 If a predefined start state shall also be reached  
for the subsequent test: 
{EF (s  EF start) |  s basic state} 
   (EF start is omitted from the next formula) 

 
 Weak transition coverage: 

{EF t |  t transition} 

 Strong transition coverage: 
{EF t |  t transition}   {EF it |  it implicit transition} 

Strong coverage: Implicit 
transitions (not leaving the 
given state) are also tested 

Set of formula is defined 
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Recap: Data flow based test coverage criteria 

 All-defs: 

 

 

 

 

 All-uses: 

use v use v use v 

def v For all v, from all def v: 

at least one  
def-clear path: 

to at least  
one use v: 

For all v, from all def v: 

at least one  
def-clear path: 

to all use v: 
use v use v use v 

def v 
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Formula for data flow based test coverage criteria 

 Weak all-defs coverage: 
{EF (t  EX E(d(v) U u(v))) | v variable, td(v)} 
 

 Weak all-uses coverage: 
{EF (t  EX E(d(v) U t’))  | v variable, td(v), t’u(v)} 

 
 Strong all-defs coverage: 

{EF (t  EX E(d(v) U (u(v)  im-u(v))))  
| v variable, td(v)} 

 Strong all-uses coverage: 
{EF (t  EX E(d(v) U t’))  

| v variable, td(v), t’ u(v)  im-u(v)} 

One def-clear path traversed from all 
def(v) to one use(v) 

One def-clear path traversed from all 
def(v) to all use(v) 

Implicit variable usage: in transitions not 
leaving the given state 
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Features of model checker based test generation  

 Capabilities of model checkers: 

o Generating (typically) a single counterexample 

o Test sequences are hard to generate for coverage criteria 
that require all paths (this way all counterexamples) 

• E.g., all-du-paths criterion  
(all def-clear paths for a given def-use pair shall be tested) 

 Abstract test sequences are generated 

o Defining the sequence of inputs 

o Expected outputs shall be determined (e.g., by simulation 
in the model) 

o Mapping is needed to concrete test sequences: concrete 
steps (calls) in a concrete test execution environment 
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Optimization of test sequences 

 Task of model checking: 

o Efficient traversal of the state space: Fast, with low memory needs 

 Required for test generation: 
Finding fast a counterexample that is as short as possible 

→ Specific settings are needed in the model checker 

o Generating the shortest test sequences: NP-complete problem 

 Possible settings (e.g., in case of model checker SPIN): 

o Breadth first search (BFS) in the state space 

o Depth first search, but with limited depth (limited DFS) 

o Finding shorter test sequences in an iterative way 

o Approximate model checking (hash function for storing checked states) 

• Some states (also covered by the hash function) will not be traversed 

• If a counterexample is found then it is a real test sequence for coverage 
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Example: Results for generating test sequences 

Options 
(compile time 
or run-time) 

Time required  
for test 

generation 

Length of  
all test  

sequences 

Longest test 
sequence 
generated 

 -I 22m 32.46s 17 3 

-dBFS 11m 48.83s 17 3 

 -i -m1000 4m 47.23s 17 3 

 -I  2m 48.78s 25 6 

 default 2m 04.86s 385 94 

 -I -m1000 1m 46.64s 22 4 

 -m1000 1m 25.48s 97 16 

-m200 –w24 46.7s 17 3 

Settings: 
• -i iterative, -I approx. iterative 
• -dBFS breadth first search 
• -m limit for depth first search 
• -w hash table size 

State machine model of the 
behavior of a mobile phone 
(10 states, 11 transitions)  
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• Timed automata models 
• Specific model checker: UPPAAL 

Clock variables: 
Modelling time dependency 
(conditions, state invariants) 

Extension of MBT to testing time-dependent behavior 
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State: 
( input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait ) 
t=0 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5  
 
Delay: 6 
 
State: 
( input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait ) 
t=6 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5  
 
Transitions: 
input.sending->input.sendInput { 1, inputChannel!, 1 } 
mobile2.CallWait->mobile2.VoiceMail { inputEvent == evKeyYes && t > 

5 && in_PowerOn, inputChannel?, 1 } 

Delays are included between the 
inputs of the test sequence 

Generated counterexamples with timing 
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Test generation by bounded model 
checking 
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Recap: Bounded model checking 

 Using SAT solvers for checking reachability of specific states 
o Given a Boolean formula (Boolean function), SAT solver generates a variable 

assignment (substitution) that makes the formula true 

 Mapping the verification problem to Boolean function: 
o Characteristic function for initial states: I(s) 

o Characteristic function for specified “bad” states: p(s)  

o Characteristic function of the state transition relation: CR(s, s’) 

o “Stepping forward” along the state transitions: CR(si, si+1) 

 The characterization of a counterexample (with conjunction): 

o Starting from the initial state: I(s)  

o „Stepping” along the transition relation: CR(s,s’)  

o Specifying that p(si) holds somewhere along the path 
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Recap: Encoding a model 

Initial state: 
   I(x,y) = (xy) 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

(0,0) (0,1) (1,1) 

s0: 

s1: 

s2: 

s3: 
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Transition relation: 
   CR(x,y, x’,y’) = (xy   x’  y’)  
              (x  y      x’  y’)  
              (   x  y   x’  y’)  
              (   x  y   x’y’) 

Paths with 3 steps from the initial state: 

     I(s0)  path(s0,s1,s2,s3) =  

        = I(x0,y0)  
   CR(x0,y0, x1,y1)  
   CR(x1,y1, x2,y2)  
   CR(x2,y2, x3,y3) 



SAT based test generation for coverage criteria 

 Constructing the Boolean function: 
o Encoding paths with k steps from the initial state 

o Specifying test criterion: In general, a TG formula 

• Reaching (covering) a state 

• Executing (covering) a transition 

• Traversing (covering) a part of the model, … 

 

 

 

 

 

 
 If this formula can be satisfied, then the substitution gives a test 

o This test is according to TG and limited to k steps 

o If there is no substitution then there is no test for TG in k steps 

Model paths  
of k length 

Test 
goal 

1
0 1

0
( ) ( , )

k
i i

R
i

I s C s Gs T





 
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Features of BMC based test generation 

 Limitations for test generation 

o Test of max. k steps can be generated 

o The length of paths can be increased iteratively 

o If a test sequence is found then it can be used 

o If there is no test found then a longer test sequence may exist 

 Mapping the test generation problem to SAT problem can 
be made automatically 

 The specification of test goals can be simplified 

o For C programs: FQL language for test goals (FSHELL tool) 
    in /code.c/ cover @line(6),@call(f1) passing @file(code.c) \ @call(f2) 

o Specifying pre- and postconditions: Is there a test when the 
postcondition is not satisfied (although the precondition holds)? 
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Test generation based on mutations 
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Using fault sets for test generation 

 Experience in software testing: 
o Coupling effect: Test cases that are efficient to find simple faults are also 

efficient for finding more complex faults 

o Competent programmer hypothesis: The programs are typically good, and 
the majority of faults are often occurring typical faults 

 Basic idea:  
o Generating “mutant” models that contain typical simple faults,  

and generate tests for detecting these faults 

o There tests are expected to be more efficient in detecting more complex 
faults than random tests 

 Typical “mutations”: 
o Changing arithmetic operations in conditions 

o Changing the ordering of actions, messages 

o Omission of actions, messages, function calls 

o … 
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Equivalence relation for BMC based test generation 

 Inputs and outputs are distinguished in the model 
o in(s) – inputs (events) in state s 

o out(s) – observable outputs (actions) in state s 

o  action: lack of observable output 

 Definition of the k-equivalence for the behaviour of two models:  

  For the first k steps, providing identical input sequences,  
 the outputs of the two models are the same 

 

 Notation: 
        Original model M:     Mutated model M’: 

Predicate for initial state:     I(s0)    I’(s’0) 

State transition relation:      CR(si, si+1)   CR’(s’i, s’i+1) 

 
Paths of length k from the initial state: 

1
0 1

0
( ) ( , )

k
i i

R
i

I s C s s






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Mutation based test generation using k-equivalence 

 Construction of a SAT formula for detecting a mutation: 
o Providing the same input sequence for the two models 

o Traversing paths of length k in the original model 

o Traversing paths of length k in the mutant model 

o At least one output shall be different in the two models 

 

 

 

 
 

 If this formula can be satisfied then the substitution defines a test 
o The test detects the mutation: An output is different if the mutation is 

included in the model 

o If there is no substitution then there is no test for k steps 

1
0

1
0 11
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The same 
inputs 

Original 
model 

Mutant 
model 

At least one 
output is different 
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More general problem: Conformance in testing 

 Test generation for mutations: 
o Construction of test input sequences that result in different behavior in the 

original (fault-free) and in the mutated model 

o Expected output sequence of the mutation test: Belongs to the mutation 

o These are so-called negative tests (failed test: no mutation) 

 How to define the “difference” between two behaviors: 
What are the faults/mutations that are allowed? 
o Additional behavior besides the specified behavior? 

o Omission of some output? 

 Typical solutions 
o Safety critical systems: Equivalent behavior, strictly according to the 

specification (complete specification and implementation are assumed) 

o “Common” systems: Conformant behavior, the specification provides the 
frame (limits) for acceptable behavior (incomplete specification and 
incomplete implementation are allowed) 
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