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Behavioral relations and testing 

Influence of model refinement on testing 

Conformance of specified and observed behavior 
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Recap: Classification of relations 

 Equivalence relations, denoted in general by = 
o Reflexive, transitive, symmetric 

 Some equivalence relations are congruence: 
o If T1=T2, then for all C[ ] context C[T1]=C[T2] 
o The same context preserves the equivalence 
o Dependent on the formalism: how to embed in C[ ] 
 

 Refinement relations, denoted by  
o Reflexive, transitive, anti-symmetric ( partial order) 

 Precongruence relation: 
o If T1T2, then for all C[ ] context C[T1]  C[T2] 
o The same context preserves the refinement 

3 



Recap: Modelling behavior and internal actions 
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Internal behavior 
of the component: 
e and f are internal actions 

Observable behavior 
of the component: 
e and f are mapped to  
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Recap: The notion of “test” and “deadlock” 

 “Test” in LTS based behavior checking: 
o Test: A sequence of actions that is expected (from initial state) 

• Analogy: interactions on ports during testing 

• Test steps are actions that may represent: sending or 
receiving messages, raising or processing events etc. 

 “Deadlock” in LTS based behavior checking: 
o A given action cannot be provided by the system in an expected 

action sequence (test) 

• Analogy: no interaction is possible on a port 

• The deadlock is given by the action that is not possible;  
it may represent that is not possible to send or receive 
message, process an event etc. 

o Failure of a test: The action that cannot be provided (deadlock) 

o Successful test: The action sequence can be provided 
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May preorder: Definition 

 Notation: 

 
 
 
 
 

 

 Definition of the may preorder refinement relation: 

 For T1 and T2  LTSs with initial states s1 and s2, Act actions: 
 

 

  T2 refines T1 as T2 offers more observable action sequences 
 (more possible behaviors that can be observed) 
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Example: May preorder 

 ( ) , ,s a ab ac 

Two LTSs with observable action sequences: 

 ( ) , , , ,  t a ab ac ad ace 
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May preorder: Relationship with testing 

 In case of              (i.e., T2 refines T1): 
o Each test that may be successful in case of T1,  

may also be successful in case of T2 
• When a test “may be successful”: due to nondeterministic 

behavior or internal actions it may also fail 

o The relation preserves the possibly successful tests: 
Possibly successful tests of T1 are included in the possibly 
successful tests of T2 

 Refinement defined by may preorder: 
o Possible observable behavior is preserved (not lost) 

 To be defined (another refinement relation): 
o Mandatory observable behavior is preserved 

o Idea: Collect failures  determine tests that never fail 

1 2T T
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Must preorder: Notation for failures 
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Example: Failure due to refused action 

Here <a,{c}> is a failure 

 

<a,{c}>  F(s) 

10 

Here <a,{c}> is not a failure 

 

However, <a,{c}> would be a 
failure if there is a  self-loop 
in the second state (i.e., it is 
divergent) 
     



Must preorder: Definition 

Definition of must preorder: Covering failures 

 

 
 

The role of failures 
o Failures: Refusing actions directly of because of divergence 

o Less failures: Less possible refusals, more successful 
actions (action sequences) 

o If the behavior is extended by adding more actions then 
the number of failures will decrease (actions become 
possible) 

o If nondeterminism is reduced then the number of failures 
may decrease (if failure is due to nondeterminism) 

1 2 1 2

2 1

  iff  F(s ) (s )

     i.e., there are less failures in  than in .

FT T F

T T

 
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Must preorder: Relationship with testing 

 In case of               (i.e., T2 refines T1): 

o T2 has less failures, cannot refuse more actions (tests) 

o Tests that are always successful in T1 are included  
in the tests that are always successful in T2 
• The refinement preserves the tests that are always successful 

• T2 has at least as many successful tests as T1 

 Characteristics of must preorder: 
o The refined LTS preserves observable behaviors that were 

already included in the more abstract LTS 

 Relation with deadlock possibility: 
o The refinement is sensitive to deadlocks 

1 2FT T
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Example: Must preorder 

Here <a,{c}> is a failure 

 

Tests of T1 that are 
always successful:  
 {a,ab}   
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Here <a,{c}> is not a failure 

 

Tests of T2 that are always 
successful:  
 {a,ab,ac} 
     



Conformance relation for testing: IOCO 

Input Output Conformance 
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Desirable properties of a conformance relation 

 Trace based relation (for test evaluation) 
• Goal is to compare the behavior observed during testing and  

the behavior described in the specification (to identify faulty behavior) 

• For black box testing: Distinguishing inputs, outputs, and internal (invisible) 
actions 

• Arbitrary interleaving of inputs and outputs (not fixed as input-output pairs) 

• The lack of output action is considered as a specific behavior 
(i.e., there is fault if the specification does not allow the lack of output) 

• Nondeterministic behavior shall be possible 

 Model: More precise than LTS 
o Action types 

• Input actions: Provided by the test driver 

• Output actions: Observable by the test evaluator 

• Internal (invisible) action: Not controlled by the environment 

o Quiescent state:  
• There is no output transition labelled by output action or internal action 

     Output transition(s) labelled only by input action(s) 

16 



The IOLTS formalism 

 Input-Output Labelled Transition System (IOLTS): 
 

 

 

 

 

 

 Actin input, Actout output actions,  internal action 

 Properties of an IOLTS: 
o Complete, if in each state there is transition defined for each action 

o Input complete (weakly input enabled), if in each state there is transition 
defined for each input action, possibly after *  

• Property of implementation model: Each input is processed somehow 

o Deterministic, if there is only a single target state in case of each observable 
action sequence 

 

0

0

( , , , )

    is the set of states,  initial state

    is the set of actions: 

    is the state transition relation

in out
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IOLTS examples 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins) 

• Notation: with ? prefix: ?1, ?2 

o Actout={c,t} outputs (coffee or tee) 

• Notation: with ! prefix: !c, !t  
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Further notations and transformations 

 Notations: 
•  observable action sequence 

• (T) set of observable action sequences of IOLTS T 

• In(s) set of input actions on transitions from state s 

• Out(s) set of observable output actions from state s 

• Out(S) set of observable output actions from state set S 

• Reachable states: with an “after” operator 

 

 

 Handling quiescent states in a uniform way: 
o The quiescent states (i.e., waiting for input) are denoted by a 

loop transition labelled with a specific  output action 
• This way we get an extended IOLTS T   

o In this IOLTS quiescence is considered as output  

 after  s' | '  s s s



 

  
 

S after  (  after )  
s S

s 



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Example: IOLTS extended with quiescence 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins), ? prefix 

o Actout={c,t} outputs (coffee or tee), ! prefix 

If there is no output action from a state then a 
 loop transition is added 

Extended with 
quiescence: 
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Example: IOLTS made complete 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins), ? prefix 

o Actout={c,t} outputs (coffee or tee), ! prefix 

Loop transitions for actions that were missing: 

Extended with 
quiescence: 

Then made 
input  
complete: 
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k-equivalence for IOLTS 

 Elements of the definition: 
o T IOLTS as “specification” (expected behavior) 
o M IOLTS as “implementation” (provided behavior) 
o Outputs follow inputs (reactive behavior) 

 Definition: 

o In the “specification” T and ”implementation” M,  
the same input sequence results in  
the same output sequence for the first k steps 

 Properties 
o Simple relation 

o Strict for testing (in k steps): 
Restrictions, extensions of the behavior are not allowed 
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IOCO relation for IOLTS 

 Elements of the definition: 
o T IOLTS as “specification” (expected behavior) 

o M IOLTS as “implementation”, that is made input complete 

o The set of potential actions is the same 

 Definition: M ioco T (”M is ioco conform to specification T”) 
For all observable action sequence in the specification: In each state that is 
reachable by such action sequence, the output actions provided by 
implementation M form a subset of the output actions given in specification T 

For all observable 
action sequence  
in the specification 

Observable output  
actions in the 
implementation 
after  

Observable output  
actions in the 
specification 
after  

0, 0,( ) : Out( after ) Out( after )M TT s s
     
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Properties of IOCO 

 Explaining the definition:  
o Def.: For all observable action sequences in the specification: In each state 

that is reachable by the action sequence, the output actions provided by 
implementation M form a subset of the output actions given in specification T 

o This way the specification shall “cover” the implementation 

o The implementation shall “fit” into the frame given by the specification 

 What are allowed? 
o Restricted behavior: The implementation may contain less potential output 

actions than in the specification 
• E.g., in case of a partial implementation, or partial resolution of nondeterminism 

o Extended behavior: The implementation may contain outputs after action 
sequences that are not included in the specification 
• E.g., the specification is not complete (some action sequences are not included) 

 What is not allowed? 
o Implementation (its outputs) cannot be extended in case of action sequences 

that are included in the specification, i.e., it is not allowed to “provide more” 
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Examples for satisfying  IOCO 

ioco 

ioco The implementation 
may contain additional 
action sequences,  
but keeps the behavior for 
action sequences given in 
the specification 

The observable output 
actions shall be checked 
after each observable 
action sequence 
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Examples for violating IOCO 

not ioco 

k0 after ?1 = {!c,} e0 after ?1 = {!c} 

not ioco k0 after <?1, , ?1> 

l0 after <?1, , ?1> 

The implementation 
extends the behavior in 
case of action 
sequences given in the 
specification 

specification 

specification 



Summary of IOCO features 

Input-output conformance relation (IOCO) by Tretmans, 1996: 
 This relation is designed for functional black box testing of systems 

with inputs and outputs 

 Inputs are under control of the environment, i.e. the tester, while 
outputs are under control of the implementation under test 

 IOCO allows one to use incomplete specifications 

 The specification and the implementation can be non-deterministic 

 The models used for IOCO allow arbitrary interleaving of inputs and 
outputs 

 IOCO considers the absence of outputs as error if this behavior is 
not allowed by the specification 

 

These properties make input-output conformance testing 
applicable to practical applications 
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Summary of the studied behavioral equivalences 

 Equivalences: For verification 
o Trace equivalence:  
o Strong bisimulation: 
o Observation equivalence: 

 
 Preorders: For model refinement and testing 

o May preorder: 
o Must preorder: 

 
 Conformance relation: For testing 

o k-equivalence 
o Input-output conformance (IOCO) 

'   iff  (s)= (s')T T  

~ '   iff  : ( , ')T T B s s B 

'   iff  : ( , ')T T WB s s WB  

'   iff  (s) (s')T T   

'   iff  F(s) (s')FT T F 
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Other techniques and tools  
for model based test generation 
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Using a planner for test generation 

 Planning problem in AI 

o Construction of an action sequence to reach a goal state from an 
initial state (using a set of actions with conditions and effects) 

 Elements of the planning problem for test generation: 

o Initial state: Initial state of the model 

o Goal state: State to be reached (covered) 

o Actions: Activities executed on the basis of inputs in the application 

 Test: Determined by the generated action sequence 

o Instances of actions: Determine required inputs for triggering 

o Partial ordering of actions (as given by mapping the conditions and 
effects)  partial ordering of inputs 

o Test input sequence results from linearization of the input sequence 
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Using evolutionary algorithms for test generation 

 Evolutionary algorithms (e.g., genetic algorithms) 
o Having an initial test suite generated by random walk 

o Modifications:  
• Mutating a test input sequence (removing, adding, reordering elements) 

• Merging parts of test input sequences 

o Test suite that has better properties w.r.t. given test criteria is 
kept for further modifications 

 Test criteria: 
o Control flow based criteria: Coverage of states, branches, 

conditions, paths, … 

o Data flow based criteria: All-defs, all-uses coverage 

o Test suite length, execution time, … 

 Example tool: 
o DOTgEAr 
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Generating tests for abstract data types 

 Abstract data types: Define operations and axioms 

 Abstract test inputs to test operations are generated 
on the basis of the axioms 
o Equivalence partitions, boundary values can be used 

41 

Type Boolean is 

 sorts Bool 

 opns  

  false, true : -> Bool 

  not : Bool -> Bool 

  and : Bool, Bool -> Bool 

 eqns 

  forall x, y: Bool 

  ofsort Bool 

   not(true) = false; 

   not(false) = true; 

   x and true = x; 



Examples for automated test generation tools (1) 

 Test generation with model checkers 
o FSHELL: For C programs 

• CBMC (bounded model checker) generates a counterexample to 
be used as test sequence for a specified test goal 

o BLAST:  
• Counterexample generated: Abstract test case for a test goal 

• Includes symbolic execution (for CEGAR): Generated test data 

o UPPAAL CoVer, TRON: 
• Modeling time-dependent behavior by timed automata 

• Counterexamples for non-coverage are generated by the UPPAAL 
model checker 

• Conformance relation for testing: 
Relativized timed input-output conformance (RTIOCO) – 
consistent with IOCO in untimed models 

42 



Examples for automated test generation tools (2) 

 Tools supporting specific modeling languages 

o Conformiq: For UML (statechart) models 

o AGATHA: UML, SDL, STATEMATE models 

• Generating path conditions and constraint solving to get test 
inputs 

o Autolink: SDL and MSC models are supported 

o STG: For LOTOS language 

o TDE/UML: Coverage criteria and constraints can be specified 

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models 

43 



Summary 

 Model based test case generation 

o On the basis of coverage criteria 
• Control flow oriented: states, transitions coverage 

• Data flow oriented: def-use coverage 

o On the basis of mutations 
• Using conformance relations (k-equivalence, IOCO) for distinguishing 

original and mutated behavior 

 Algorithms and tools 

o Direct (graph-based) algorithms 

o Model checkers: Counterexample as test case 

o Planner algorithms: Goal-oriented action sequence 

o Evolutionary algorithms: Optimizing (random) test suite 

o Test for (abstract) data types: On the basis of operators’ axioms 
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