
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification during maintenance

Istvan Majzik
majzik@mit.bme.hu

Software Verification and Validation (VIMMD052)

1

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

• Checking completeness, consistency, feasibility, verifiability
• Assuring traceability

• Trade-off analysis, interface analysis, fault effects analysis
• Model based quantitative evaluation

• Formal verification by (temporal logic based) model checking
• Equivalence checking

• Source code analysis
• Software model checking with abstraction
• Proof of program correctness by theorem proving
• Module testing (unit testing)

2

• Integration testing
• System testing

• Validation testing

• Maintenance procedures and documentation
• Test selection for debugging and re-testing

Software maintenance

Software
maintenance

Software maintenance
plan

Software quality
assurance plan

Software maintenance
records

Software change
records

Software maintenance
verification report

3

Software maintenance plan

 Procedures to be planned:
o Submitting bug reports, collecting error logs

o Planning, implementing, verifying maintenance

o Approval of maintenance

 The competences, tools, planning, documentation shall be at the
same level as in case of development

 Measures and techniques in safety standards:
o Data collection and analysis

o Effect analysis

 Documentation:
o Software change records

o Software maintenance records

4

Software change records and maintenance records

 Software change records
o Belongs to the change activity

o Request for change/modification

o Specification of modification

o Analysis of the effect of modification

o Verification and validation of modification

 Software maintenance records
o Belongs to the software element as “history”

o Reference to the applied change records

o Information related to the effects of a change

o Tasks for repeated validation, regression test cases

o Configuration and its history

5

Supporting maintenance

 Tasks:

o In case of modification: Effect analysis

o In case of bug report: Debugging, repair

o In case of both: Verification (testing and re-testing)

 Supporting technology: Program slicing

o Analysis of the effects of a modification/repair

o Reducing the complexity of debugging

o Helping in test selection for testing and regression
testing

6

Selecting relevant parts of the program: Program slicing

 Only a part (“slice”) of the program can be taken into account
when debugging, verifying, (re-)testing the program

o Debugging: What part of the program determines the value of a given
variable at a statement?

o Verification, testing: What is those part of the program that is
influenced when a statement is changed?

• What causes the
error here?

• What is affected by
a change here?

7

Definition of static slicing

 Static slicing criterion: C = (V, I)

o V is a subset of program variables

o I is a selected statement of the program

 The static slice S of a program M according to the

 C = (V, I) slicing criterion:

Executable subprogram of M, for which the following holds:

o Executing M and S for any program input:

the variables in V have the same values in both programs

at the statement I

 Slicing: Selects those statements of program M that

influence the values of variables in V at statement I

8

Example: Static slicing (1)

 procedure SumEven

 int n, sum, j

1 sum := 0

2 j := 2

3 n := read()

4 while (n > 0) do

5 sum := sum + j

6 j := j + 2

7 n := n - 1

 endwhile

8 write (sum)

 The program summarizes the
first n even numbers.

9

Example: Static slicing (2)

 procedure SumEven

 int n, sum, j

1 sum := 0

2 j := 2

3 n := read()

4 while (n > 0) do

5 sum := sum + j

6 j := j + 2

7 n := n - 1

 endwhile

8 write (sum)

Criterion:

 C=({j}, 6)

Influencing statements:

 2: assignment to j

 4: start of the while loop

 3: influences the loop (n)

 7: influences the loop (n)

Slice according to C=({j}, 6):
{2, 3, 4, 6, 7}

Slice according to C=({n},7):
{3, 4, 7}

10

Basis for slicing: Dependencies in the program

 A statement b is control dependent from statement a in the
CFG of a program, if:

o There is a program path to b that includes a,

o There exists a path that includes a but does not reach b

 A statement b is data dependent from statement a, if :

o The (a, b) pair of statements forms a def-use pair

 The program dependence graph (PDG) of a program:

o Contains a unique entry node (with control dependences to all)

o Includes program statements as nodes

o There is an edge from node representing statement a to node
representing statement b:

• if b is control dependent from a,

• or b is data dependent from a

11

Dependence graph of the example program

Control dependences: Thick edges
Data dependences: Thin edges

entry

sum:=0 j:=2 n=read()

while n>0 write(sum)

sum:=sum+j j:=j+2 n:=n-1

12

Determining a static backward slice

Forming a backward slice:

 Constructing the Program Dependence Graph

 Starting from the node representing the statement given in the
slicing criterion

 Including in the slice those statements that are on the paths
reachable by stepping backward on the dependency edges

Algorithm: List based processing for the PDG
1. Insert into the list the statement in the slicing criterion

2. Taking a statement from the list and including it in the slice

3. Inserting into the list those statements that are at the source of edges
leading to the processed statement (and were not processed yet)

4. Continuing the algorithm from step 2 until the list becomes empty

13

Backward slice for the example program

 Static backward slice for criterion C=({n},7)

 Built by starting from the statement in the criterion (n:=n-1) and stepping
backward on the dependencies

entry

sum:=0 j:=2 n=read()

while n>0 write(sum)

sum:=sum+j j:=j+2 n:=n-1

14

Forward slice for the example program

 Static forward slice for criterion C=({j},2)

 Built by starting from the statement in the criterion (j:=2) and stepping
forward on the dependencies entry

sum:=0 j:=2 n=read()

while n>0 write(sum)

sum:=sum+j j:=j+2 n:=n-1

15

Program structures for slicing

The construction of slices is a reachability problem

Control Dependence
Graph (CDG)

Data Dependence
Graph (DDG)

Program Dependence
Graph (PDG)

System Dependence
Graph (SDG)

Intra-procedural
slicing

Inter-procedural
slicing

Inserting edges for
function calls

16

System
Dependence
Graph (example)

17

Summary: Using static slices

 Slicing result in smaller programs

o Easier to handle and understand during debugging

o Smaller code in case of testing

 Questions that can be answered using slices:

o Backward slice: What are the statements that influence an
erroneous value?

o Forward slice: What are the statements that are influenced
when a statement is changed? What shall be (re)tested?

Related problem:
Debugging on the basis of a concrete test input (that failed)

 The slice shall not consider any input but the concrete one

 The size of the slice can be further reduced

18

Definition of dynamic slicing

 Slicing is performed on the basis of a program path executed
in case of a given input

o Loops: May be executed several times in the path

 Dynamic slicing criterion: C = (t, Iq, V)

o t is the input of the program (test input)

o Iq is a selected statement (executed q times)

o V is a subset of program variables

 Definition: Dynamic slice S of program M according to slicing
criterion C=(t, Iq, V):
Executable subprogram of M for which the following holds:

o Executing M and S for the given input t,

 the variables in V have the same values in both programs

 at the q-th execution of statement I

19

Dynamic slice of the example program (1)

 procedure SumEven

 int n, sum, j

1 sum := 0

2 j := 2

3 n =: read()

41 while (n > 0) do

51 sum := sum + j

61 j := j + 2

71 n := n - 1

 endwhile

8 write (sum)

Criterion:

C=(n=1, 81, {sum})

The loop is executed once (n=1).

Statements that influence 8:

 51: value assignment (sum)

 3: reading n (for the loop)

 1 and 2: initial assignments

Dynamic slice:

{1, 2, 3, 5, 8}

20

Dynamic slice of the example program (2)

 procedure SumEven

 int n, sum, j

1 sum := 0

2 j := 2

3 n =: read()

40 while (n > 0) do

50 sum := sum + j

60 j := j + 2

70 n := n - 1

 endwhile

8 write (sum)

Criterion:

C=(n=0, 81, {sum})

The loop is not executed.

Statements that influence 8:

 3: reading n (for the loop)

 1: initial assignment

Dynamic slice:

{1, 3, 8}

21

Using dynamic slices

 Differences regarding program paths:

o Static slice:
All potential inputs (program executions)
and all related dependencies
are taken into account (there is no specific input)

o Dynamic slice:
Restricted to a specific input,
that defined a concrete execution path,
thus resulting in smaller slice than the static slice

 Debugging after a failed test

o Looking for bugs in case of the given test input

o Dynamic slice can be used

22

Overview of slicing types

 Types of slicing:

o Executable – not executable (just for understanding)

o Static – dynamic

o Forward – backward

o Interprocedural – intraprocedural

 The type of slicing depends on the usage

o Debugging

o Effect analysis, dependency analysis

o Program understanding

o Testing and retesting

23

Tools supporting slicing

 WPS - The Wisconsin Program Slicing System
o Classic tool

 CodeSurfer (GrammaTech)
o Static slicing on C programs

o Impact Analysis: See what statements depend on a selected statement or
instruction

o Control Dependence Analysis: See the code that influences a statement's
execution

 Unravel (NIST)
o Program slicing tool that can be used to statically evaluate ANSI C

source code

 MS Software Reengineering Toolkit (Semantics Designs)
o General machinery for program control and data flow analysis

 Frama-C platform

 …

24

