The role of development standards in software V&V

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Synopsis

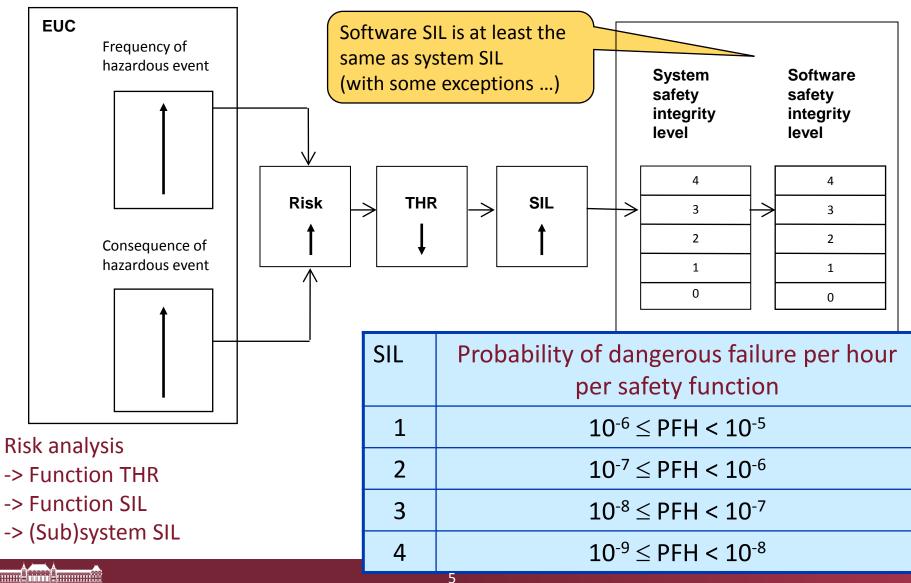
- Introduction
- Verification in the requirement phase
- Architecture verification and evaluation
- Verification of the detailed design
 - Classic techniques
 - Formal methods: model checking, equivalence checking
 - Advanced methods: formal verification of extra-functional properties and timed behavior, handling complex designs (large state spaces)
- Verification of the source code
 - Code review, abstract interpretation, symbolic execution
 - Classic techniques of proving program correctness
- Testing and test case generation
 - Test design at unit level
 - Integration and system testing
 - Model based testing and test case generation
- Validation and assessment
- V&V in the maintenance phases
- Integrated approaches

The role of development standards

How systematic V&V is realized?

Use of standards: Safety critical systems

Standards for development


- IEC 61508: Functional safety in electrical / programmable electronic systems
- EN 50128: Railway control software
- ISO 26262: Automotive software
- DO 178B: Airborne software

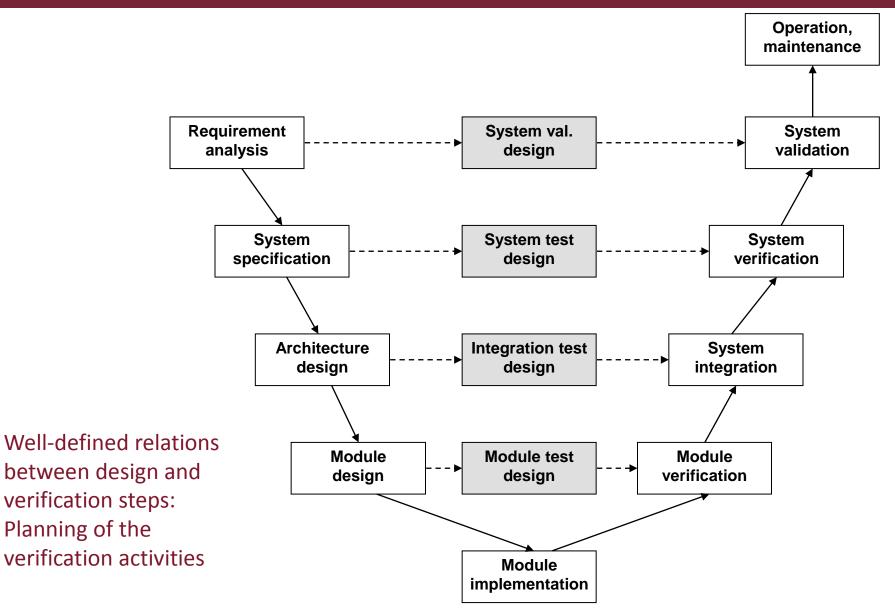
Specification of safety functions

- Functionality: Intended to achieve or maintain a safe state
- Safety integrity: Probability that a safety-related system satisfactorily performs the required safety functions (under all stated conditions and within a stated period of time)
- Safety integrity levels
 - Safety integrity assignment to functions: Based on risk analysis (of failures)
 - Continuous operation: Tolerable rate of failures
 - On demand operation: Tolerable probability of failure
 - Tolerable Hazard Rate:
 - Categories based on numerical ranges: SIL 1, 2, 3, 4

Determining SIL

Hazard identification and risk analysis -> Target failure measure

Demonstrating SIL requirements


• Safety case:

- Documented demonstration that the product complies with the specified safety requirements (functional + safety integrity)
- Evidence is based on verification and validation
- Random failure integrity (for hardware):
 - Quantitative approach: Based on statistics, experiments
 - Computation of system failure rate using component fault rate data from reliability handbooks
- Systematic failure integrity (for software):
 - Quantitative approach is not possible (missing reliability data)
 - Qualitative approach: Prescribing rigor in the development
 - 1. Well-defined development process (life cycle)
 - 2. Mandatory / recommended techniques and measures
 - 3. Organizational structure: Independence of persons / roles
 - 4. Precise documentation

1. The development process (life cycle)

- Strict rules for proceeding to the next step: Important to verify the results of development
 - High costs of late corrections (esp. during operation)
 - The risk caused by remaining failures may be high
- Typically results in a static process (e.g., V-model)
 - Well-defined steps
 - Requirements and environment known in advance
- Other characteristics:
 - Evidences collected for the safety case
 - Assessment (independent review)
 - Certification and supervision by safety authorities, based on the development standard

Typical life-cycle model: V-model

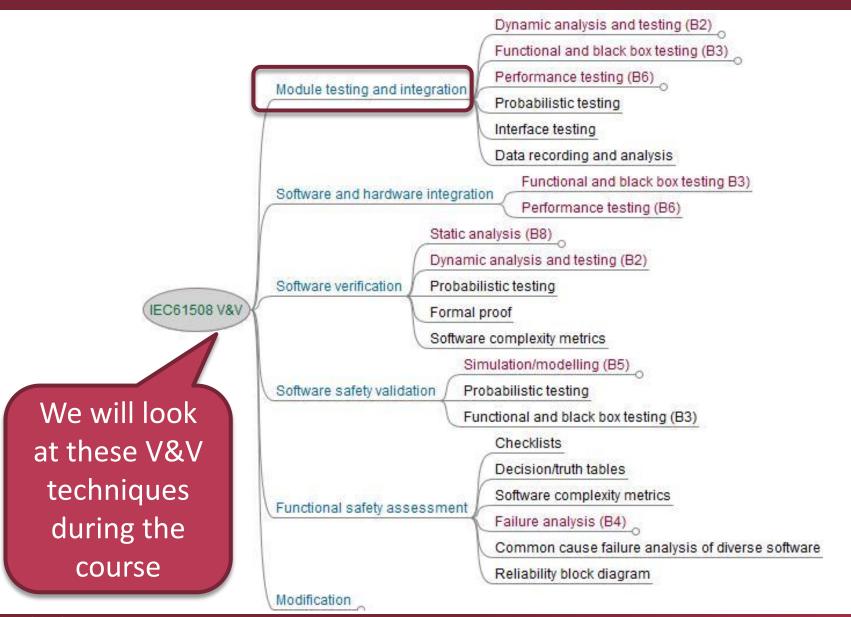
2. Techniques and measures

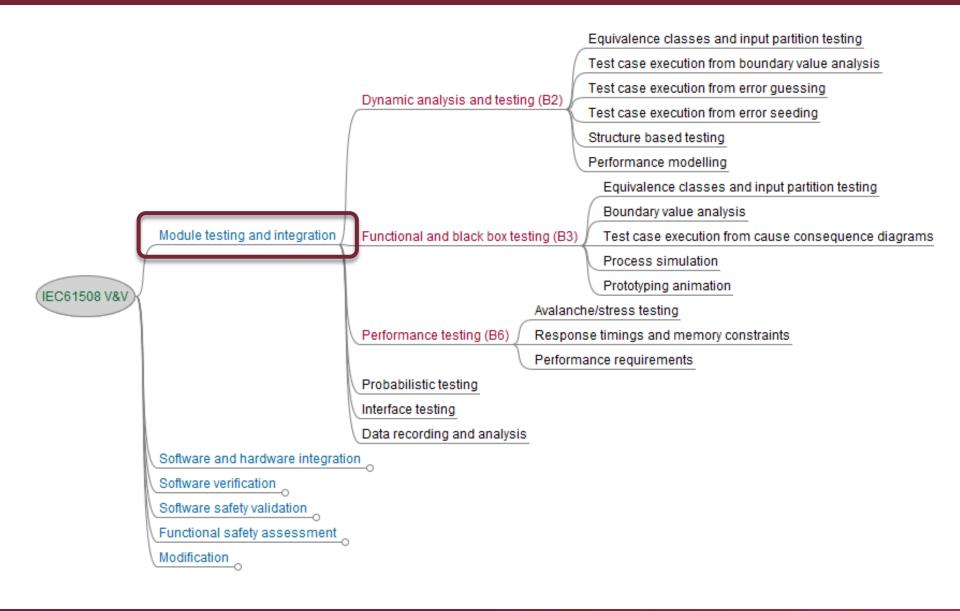
- Goal: Preventing the introduction of systematic faults and controlling the residual faults
- SIL determines the set of techniques to be applied as
 - M: Mandatory
 - HR: Highly recommended (rationale behind not using it should be detailed and agreed with the assessor)
 - o R: Recommended
 - ---: No recommendation for or against being used
 - NR: Not recommended
- Combinations of techniques is allowed
 - E.g., alternative or equivalent techniques are marked
- Hierarchy of techniques (references to sub-tables)

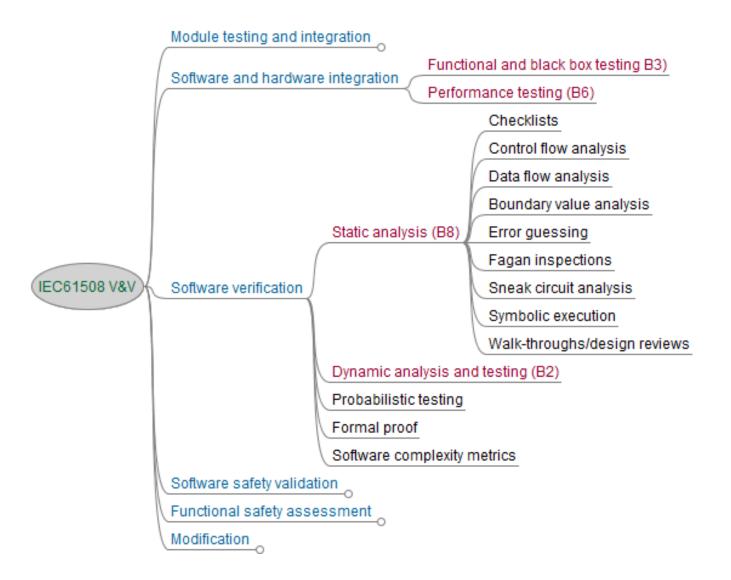
Example: Testing techniques (EN 50128)

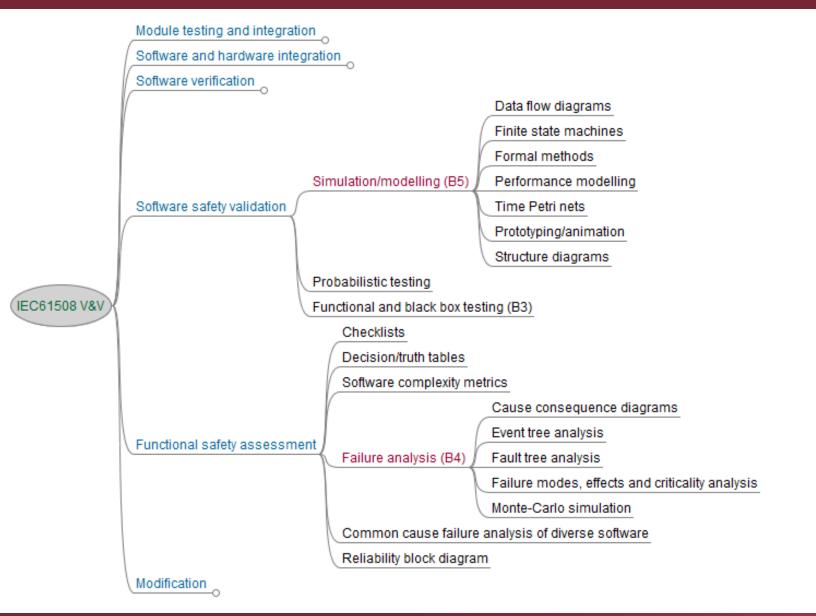
Software design and implementation:

TECH	NIQUE/MEASURE	Ref	SWS ILO	SWS IL1	SWS IL2	SWS IL3	SWS IL4
14.	Functional/ Black-box Testing	D.3	HR	HR	HR	М	м
15.	Performance Testing	D.6	-	HR	HR	HR	HR
16.	Interface Testing	B.37	HR	HR	HR	HR	HR

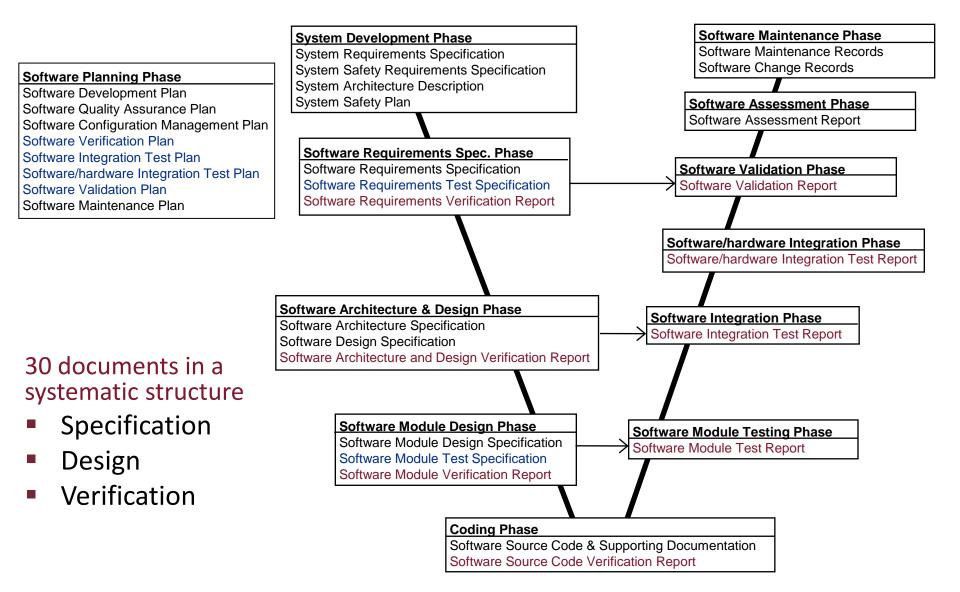

Functional / black box testing (D3):


Test Case Execution from Cause Consequence Diagrams	B.6	-	-	-	R	R
Prototyping/Animation	B.49	-	F	-	R	R
Boundary Value Analysis	B.4	R	HR	HR	HR	HR
Equivalence Classes and Input Partition Testing	B.19	R	HR	HR	HR	HR
Process Simulation	B.48	R	R	R	R	R
	Consequence Diagrams Prototyping/Animation Boundary Value Analysis Equivalence Classes and Input Partition Testing	Consequence DiagramsPrototyping/AnimationB.49Boundary Value AnalysisB.4Equivalence Classes and Input Partition TestingB.19	Consequence DiagramsPrototyping/AnimationB.49Boundary Value AnalysisB.4REquivalence Classes and Input Partition TestingB.19	Consequence DiagramsB.49-Prototyping/AnimationB.49Boundary Value AnalysisB.4RHREquivalence Classes and InputB.19RHRPartition TestingInputInputInput	Consequence DiagramsB.49Prototyping/AnimationB.49Boundary Value AnalysisB.4RHREquivalence Classes and InputB.19RHRPartition TestingInputB.19R	Consequence DiagramsB.49RPrototyping/AnimationB.49RBoundary Value AnalysisB.4RHRHRHREquivalence Classes and InputB.19RHRHRHRPartition TestingInputB.19RInputInput


Example: Testing techniques (EN 50128)


Performance testing (D6):

TECHNIQUE/MEASURE			SWS ILO	SWS IL1	SWS IL2	SWS IL3	SWS IL4
1.	Avalanche/Stress Testing	B.3	-	R	R	HR	HR
2.	Response Timing and Memory Constraints	B.52	-	HR	HR	HR	HR
3.	Performance Requirements	B.46	-	HR	HR	HR	HR


3. Precise documentation

- Type of documentation
 - Comprehensive (overall lifecycle)
 - E.g., Software Verification Plan
 - Specific (for a given lifecycle phase)
 - E.g., Software Source Code Verification Report
- Document Cross Reference Table
 - Determines documentation for a lifecycle phase
 - Determines relations among documents
- Traceability of documents is required
 - Relationship between documents is specified ("based on", "includes")
 - Terminology, references, abbreviations are consistent
- Merging documents is allowed

If responsible persons (authors) shall not be independent

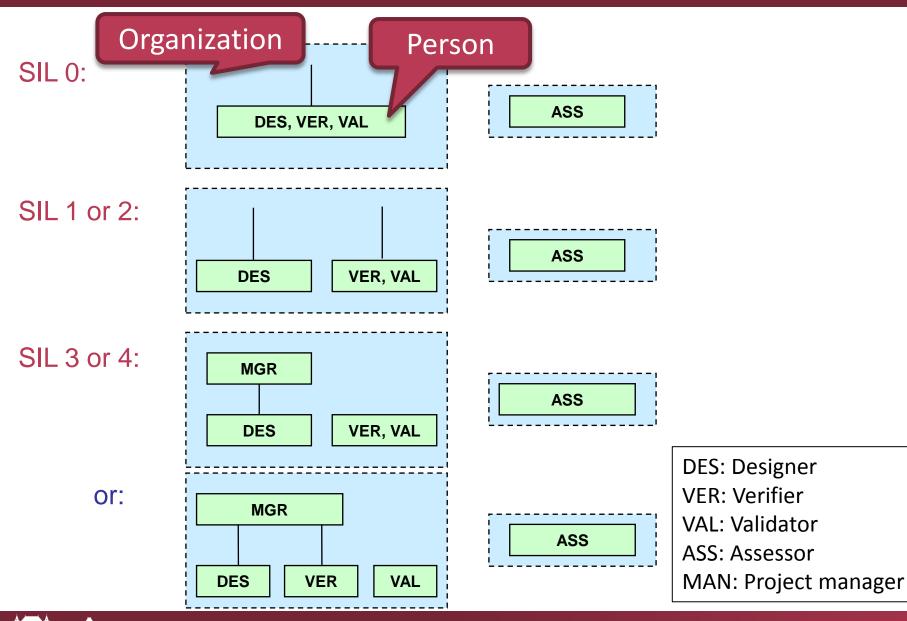
Example: Document structure (EN50128)

Example: Document cross reference table (EN50128)

Creation of a document

• Use of a document in a given phase

clause	8	9	10	11	12	13	14	15	16	
title	SRS	SA	SDD	SVer	S/H I	SVal	Ass	Q	Ma	
PHASES (*)=in parallel with other phases										DOCUMENTS
SW REQUIREMENTS		•	•	• •	•	•	* *			Sw Requirements Specification Sw Requirements Test Specification Sw Requirements Verification Report
SW DESIGN			•	• •	* *	• •	* *			Sw Architecture Specification Sw Design Specification Sw Arch. and Design Verification
SW MODULE DESIGN				• •	•	•	• •			Sw Module Design Specification Sw Module Test Specification Sw Module Verification Report
CODE				•	•	• •	• •			Sw Source Code Sw Source Code Verification Report
MODULE TESTING				•						Sw Module Test Report
SW INTEGRATION										Sw Integration Test Report Data Test Report
SW/HW INTEGRATION										Sw/Hw Integration Test Report
VALIDATION (*)										Sw Validation Report


4. Organization and independence of roles

- Safety management
 - Quality assurance
 - Safety Organization (responsible persons)
- Competence shall be demonstrated
 - Training, experience and qualifications
- Independence of roles:
 - DES: Designer (analyst, architect, coder, unit tester)
 - VER: Verifier
 - VAL: Validator
 - ASS: Assessor
 - MAN: Project manager
 - QUA: Quality assurance personnel

Example: Responsibilities (EN 50128)

