
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification of the Architecture
Design

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Overview

 Motivation
o Architecture design and languages

o What is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Fault effects analysis

 Model based quantitative evaluation
o Performance evaluation

o Dependability evaluation

3

Motivation

Architecture design and languages

What is determined by the architecture?

What kind of verification methods can be used?

4

Inputs and outputs of the phase

Designing the

software

architecture

Software architecture

design (specification)

Software (/hardware)

integration test plan

Software architecture

verification report

Software requirements

specification

System architecture

design

Software quality

assurance plan “Local”

checking

For integration

testing

Architecture design

 What is the architecture?
o Components (with properties)

o Relations among them (use of service, deployment, …)

 Design decisions
o Identifying components and specifying their relations

• Implementing system functions by interactions of components

• Hardware-software separation and interactions

o Specifying properties of components
• Performance, redundancy, safety, ...

o Using architecture design patterns
• E.g., MVC, N-tier, …

o Re-use off-the-shelf (OTS) and existing components

6

Typical languages for architecture design

 UML

 SysML (e.g., Block diagram)

 AADL: Architecture Analysis and Design Language
o Components

o Relations: Data/event interchange on ports

o Mapping to hardware

o Properties for analysis

7

Typical languages for architecture design: SysML

8

Typical languages for architecture design: AADL

AADL: Architecture Analysis and Design Language
(v2: 2009)
o For embedded systems (SAE)

 Software components
o System: Hierarchic structure of components

o Process: Protected address range

o Thread group: Logic group of threads

o Thread: Concurrently schedulable execution
unit

o Data: Sharable data

o Subprogram: Sequential, callable code unit

9

Typical languages for architecture design: AADL

 Hardware components
o Processor, Virtual Processor: Platform for

scheduling of threads/processes

o Memory: Storage for data and executable
code

o Bus, Virtual Bus: Physical or logical unit of
connection

o Device: Interface to/from external
environment

 Mapping
o Between software and hardware

o Between logical (virtual) and physical
components

10

Typical languages for architecture design: AADL

 Example: Mapping between components

11

Typical languages for architecture design: AADL

 Relations

o Data and event flow on
ports

 Property specification
for analysis

o Timing

o Scheduling

o Error propagation
(using an extension of
AADL)

 Models in graphical,
textual, XML formats

12

What is influenced by the architecture? 1/2

 Performance
o Resource assignment: Parallel processing, queuing policy,

deployment of critical services
o Resource management: Scheduling of resources, dynamic

resource assignment, load balancing
 Dependability

o Error detection: Push/pull monitoring, exception handling
o Fault tolerance: Static redundancy, dynamic redundancy,

forward/backward recovery
o Fault handling: Reconfiguration, graceful degradation

 Security
o Protection of sensitive data: Components for

authentication, authorization, data hiding
o Detection of intrusion: Confinement of illegal access
o Recovery after intrusion: Maintenance of data integrity

13

What is influenced by the architecture? 2/2

 Maintainability
o Encapsulation: Semantic coherence
o Avoiding domino effect of changes: Information hiding,

confinement, usage of proxies
o Late binding: Runtime registration, configuration

descriptors, polymorphism
 Testability

o Assuring controllability and observability
o Separation of interfaces and implementation
o Recording and replaying interactions

 Usability
o Separation of user interface
o Maintenance of user model, task model, system model in

runtime

14

Example: Safety architecture 1/2

SCADA system: Supervisory Control
and Data Acquisition

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication

protocol

GUI

Bitmap

Database

Input Control

Communication

protocol

17

Example: Safety architecture 2/2

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication

protocol

Channel 2 (N)

Database

Control Input

Communication

protocol

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication

protocol

Channel 2 (N)

Database

Control Input

Communication

protocol

Error detection: Independent software
„channels” with comparison at I/O and HMI

18

Summary: System properties and the design space

19

System property Related design decisions (examples)

Performance Resource assignment,
resource management

Dependability Error detection, fault tolerance and fault
handling with redundancy

Security Protection against illegal access,
detection of intrusion, recovery

Maintainability Encapsulation, avoiding domino effect,
late binding

Testability Controllability, observability, separation
of interfaces

Usability Separation and maintenance of user,
task and system models

Overview: What are the verification techniques?

 Review: Analysis of requirements and architecture
related decisions
o Architecture trade-off analysis (ATAM)

 Static analysis: Systematic architecture analysis
o Interface analysis

• Conformance of required and offered interfaces

o Fault effect analysis by combinational techniques
• Component level faults System level effects

 Quantitative analysis: Model based evaluation
o Evaluation of extra-functional properties by

constructing and solving an analysis model
• Computing system level properties on the basis of the local

properties of components and relations

20

Analysis of requirements and
architecture related decisions

ATAM: Architecture Trade-off Analysis

21

Requirements based architecture analysis

 Architecture Tradeoff Analysis Method (ATAM) goals
o What are the quality objectives and their attributes?

• What are the relations and priorities of the quality objectives?

o How does the architecture satisfy the quality objectives?
• Do the architecture level design decisions support the quality

objectives and their priorities? What are the related risks?

 Basic ideas
o Systematic collection of quality objectives and attributes:

Utility tree with priorities

o Capturing and understanding the objectives:
Scenarios (that exemplify the role of the quality attribute)

o Architecture evaluation: What was the design decision,
what are the related sensitivity points, tradeoffs, risks?

22

ATAM conceptual analysis process

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

23

Architectural
plan

Business
drivers

Quality
attributes

Scenarios

Architectural
approaches

Architectural
decisions

Sensitivity

Tradeoffs

Non-risks

Risks

Analysis

Collection of quality objectives: Utility tree structure

 Utility divided to quality objectives

 Quality objective is characterized by attributes

 Attributes are exemplified by scenarios

24

Utility Objective Attribute Scenario

Objective

Objective

Attribute

Attribute

Scenario

Scenario

Collection of quality objectives: Utility tree

Priority:
Low, Medium, High

Implementation complexity:
Low, Medium, High

Scenarios for
capturing
(refined)
attributes

Attributes
belonging to
quality
objectives
and their
refinements

25

Quality
objectives

Steps of the analysis – with examples

 Analysis of the architectural support for the scenarios
o Scenario: Recovery in case of disk failure shall be performed in < 5 min

o Reaction as design decision: Replica database is used

 Analysis of sensitivity points
o The use of replica database influences availability

o The use of replica database influences also performance
• Synchronous updating of the replica database: Slow

• Asynchronous updating of the replica database: Faster, but potential data loss

 Analysis and optimization of the tradeoffs
o The use of replica database influences both availability and performance –

depending on the updating strategy

o Tradeoff (decision): Asynchronous updating of the replica database

 Analysis of the risks of tradeoffs
o Replica database with asynchronous updating (as an architecture design

decision) is a risk, if the cost of data loss is high
• The decision is optimal only in context of the given needs and costs constraints

26

The process of ATAM 1/2

1. Presentation of the method <- evaluation leader

2. Presentation of business drivers <- development leader

o Functions, quality objectives, stakeholders

o Constraints: technical, economical, management

3. Presentation of the architecture <- designers

4. Identification of the design decisions <- designers

5. Construction of the utility tree <- designers, verifiers

o Refinement of quality objectives and attributes

o Assignment of scenarios to capture objectives

• Inputs, effects that are relevant to the quality objective

• Environment (e.g., design-time or run-time)

• Expected reaction (support) from the architecture

o Assignment of priorities to the scenarios (objectives)

27

The process of ATAM 2/2

6. Analysis of the architecture <- verifiers

o Architectural support

o Sensitivity points

o Tradeoffs

o Risks

7. Extending the scenarios <- stakeholders

o Contribution of testers, users, etc.

o Brainstorming: Aspects of testability, maintenance, ergonomics, etc.

o Assignment of priorities

8. Continuing the architecture analysis <- verifiers

o In case of scenarios with priorities that are high enough

9. Presentation of results <- verifiers

o Preparation of a summary document

28

Advantages of ATAM

 Quality objectives are explicit and clarified

o Refinement of objectives, assignment of scenarios

o Assignment of priorities

 Early identification of risks

o Explicit analysis of the effects of architecture design
decisions (model based analysis may be used)

o Investigation of tradeoffs

 Stakeholders are involved

o Designer, tester, user, verifier

o Communication among the stakeholders

 Documenting architecture related decisions and risks

29

Systematic analysis methods

1. Interface analysis

2. Fault effects analysis

30

1. Interface analysis

 Goals
o Checking the conformance of component interfaces

o Completeness: Systematic coverage of relations and interfaces

 Syntactic analysis
o Checking function signatures (number and types of parameters)

 Semantic analysis
o Based on the description of the functionality of the components

o Analysis of contracts (contract based specifications)

 Behavioral analysis
o Based on the behavior specification of components

o Behavioral conformance is checked (e.g., in case of protocols)

o Precise behavioral equivalence relations are defined (e.g.,
bisimulation), also timing can be checked

31

Example: Interface analysis

 „Contract-based” specification of component functionality: JML

public class Purse {
final int MAX_BALANCE;
int balance;

/*@ invariant pin != null && pin.length == 4 @*/
byte[] pin;

/*@ requires amount >= 0;
@ assignable balance;
@ ensures balance == \old(balance) – amount

&& \result == balance;
@ signals (PurseException) balance == \old(balance);
@*/

int debit(int amount) throws PurseException {
if (amount <= balance) {

balance -= amount;
System.out.println("Debit placed"); return balance; }

else {
throw new PurseException("overdrawn by " + amount); }}

 Contract based tools: for proving of properties (EscJava2),
runtime verification (jmlc)

32

2. Fault effects analysis

 Goal: Analysis of the fault effects and the evolution of
hazards on the basis of the architecture

o What are the causes for a hazard?

o What are the effects of a component fault?

 Results:

o Hazard catalogue

o Categorization of hazards

• Rate of occurrence

• Severity of consequences

 Risk matrix

o These results form the basis for risk reduction

trigger

Cause Hazard Consequence

rate severity

33

Categorization of the techniques

 Analysis approach:
o Cause-consequence view

• Forward (inductive): Analysis of the effects of faults and events

• Backward (deductive): Analysis of the causes of hazards

o System hierarchy view
• Bottom-up: From the components to subsystems / system level

• Top-down: From the system level down to the components

 Systematic techniques are used
A. Fault tree analysis

B. Event tree analysis

C. Cause-consequence analysis

D. Failure modes and effects analysis

34

2.A. Fault tree analysis

 Analysis of the causes of system level hazards

o Top-down analysis

o Identifying the component level combinations of
faults and events that may lead to hazard

 Construction of the fault tree

1. Identification of the foreseen system level hazard:
on the basis of environment risks, standards, etc.

2. Identification of intermediate events (pseudo-events):
Boolean (AND, OR) combinations of lower level events
that may cause upper level events

3. Identification of primary (basic) events:
no further refinement is needed/possible

35

Set of elements in a fault tree

Top level or intermediate event

Primary (basic) event

Event without further analysis

Conditional event

AND combination of events

OR combination of events

Normal event (i.e., not a fault)

36

Example: Fault tree of an elevator

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Top level event
(hazard)

Primary
evens

Boolean
relation

Intermediate
event

Button
stuck

Secondary
proc. fault

Event without
further analysis

37

Qualitative analysis of the fault tree

 Fault tree reduction: Resolving intermediate
events/pseudo-events using primary events
 disjunctive normal form (OR on the top of the tree)

 Cut of the fault tree:
AND combination of primary events

 Minimal cut set: No further reduction is possible

o Minimal cut: There is no other cut that is its subset

 Outputs of the analysis of the reduced fault tree:

o Single point of failure (SPOF)

o Events that appear in several cuts

38

Example: Reduced fault tree of the elevator

Elevator
stuck

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

SPOFPotential
SPOF

40

Cuts

Quantitative analysis of the fault tree

 Computing the probability of the system level hazard
o Using: Probabilities of the primary events

(component level data, experience, or estimation)

 Computation is based on the combinations (gates)
of primary events
o AND gate: Product of event probabilities (if independent)

• Exact calculation: P{A and B} = P{A} · P{B|A}

o OR gate: Sum of probabilities (worst case estimation)
• Exactly: P{A or B} = P{A} + P{B} - P{A and B} <= P{A} + P{B}

o Probability as time function can also be used in
computations (e.g., reliability, availability)

 Limitations of the analysis
o Correlated faults (not independent), fault sequences

41

Example: Fault tree of the elevator with probabilities

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

p2 p3

p1 p2p3

p4 p5

p4p5 p6

p4p5+p6

p1+p2p3+(p4p5+p6)

42

2.B. Event tree analysis

 Forward (inductive) analysis:
Investigates the effects of an initial event
o Initial event: component level fault/event

o Related events: faults/events of other components

o Ordering: causality, timing

o Branches: depend on the occurrence of events

 Investigation of hazard occurrence „scenarios”
o Path probabilities (on the basis of branch probabilities)

 Advantages: Investigation of event sequences
• Example: Checking protection systems (protection levels)

 Limitations of the analysis
o Complexity, multiplicity of events

45

Example: Event tree of a protection system

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no

46

Example: Event tree of a protection system

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no

P1•P3•P4

P1

1-P2

P2

P3

1-P3

P4

1-P4

P5

P5

P1•P3•P4•P5

P1•P3

P1

P1•P5

P1•P2

47

2.C. Cause-consequence analysis

 Connecting event tree with fault trees

o Event tree: Scenarios (sequence of events)

o Connected fault trees: Analysis of event occurrence,
computing the probability of occurrence

 Advantages:

o Sequence of events (forward analysis) together with
analysis of event causes (backward analysis)

 Limitations of the analysis:

o Complexity: Separate diagrams are needed for all
initial events

51

Example: Cause-consequence analysis

High

pressure

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

52

Example: Cause-consequence analysis

High

pressure

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

P1 = pa + pb

P0•P1 P0•P1•P2

P0

P0

pa pb

P2 = pc + pd

pc pd

53

2.D. Failure Modes and Effects Analysis (FMEA)

 Tabular representation and analysis of components, failure
modes, probabilities (occurrence rates) and effects

 Advantages:
o Systematic listing of components and failure modes
o Analysis of redundancy

 Limitations of the analysis
o Complexity of determining the fault effects (using simulators,

analysis models, symbolic execution etc.)

Component Failure mode Probability Effect

Detecting that
a temperature
value is greater
than L

> L not detected

 L detected

65%

35%

Over-heating

Process is
stopped

… … … …

54

Model based quantitative evaluation

Performance evaluation

55

Model based quantitative evaluation

Goal: Evaluation of architecture solutions
 Analysis models are constructed and solved on the basis of the

architecture model, e.g.
o Performance model

o Dependability model

o Safety analysis model

 Analysis models are mathematical models
o Capture how local parameters of components and relations influence

system level properties

o The solution of the model (= computation of selected model
characteristics) provide system level properties

 Modular construction of analysis models (possibly automated)
o Architecture: Components and relations

o Analysis model: Submodels (modules) for components and relations

56

General approach for model based evaluation

Parameters of
relations

Parameters of
components

Analysis
model

System
properties

Analysis modules belonging to
components and relations

57

Architecture design:
Components + Relations

Captures how local parameters
of components and relations
influence the system level
properties

Typical analysis models

58

Performance
model

Dependability
model

Safety analysis
model

Component
parameters

Local execution
time of functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection
coverage, …

Fault and hazardous
event occurrence rate

Relation
parameters

Call forwarding
rate, call
synchronization

Error propagation
probability,
conditions of error
propagation,
repair strategy

Hazard scenario,
hazard combinations

Model Queuing network Markov chain, Petri net Markov chain, Petri net

System
properties
(computed)

Request handling
time, throughput,
processor
utilization

System level reliability,
availability,
MTTF, MTTR, MTBF

System level hazard
occurrence rate,
criticality

Performance modeling

59

Performance
model

Dependability
model

Safety analysis
model

Component
parameters

Local execution
time of functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection
coverage, …

Fault and hazardous
event occurrence rate

Relation
parameters

Call forwarding
rate, call
synchronization

Error propagation
probability,
conditions of error
propagation,
repair strategy

Hazard scenario,
hazard combinations

Model Queuing network Markov chain, Petri net Markov chain, Petri net

System
properties
(computed)

Request handling
time, throughput,
processor
utilization

System level reliability,
availability,
MTTF, MTTR, MTBF

System level hazard
occurrence rate,
criticality

Performance modeling: Formalisms

 Typical formalism: Queuing networks
o Servers, hosts, requests and replies, waiting queues

 Example: Layered Queuing Network (LQN)
o Suitable for distributed client-server applications

 Model elements
o Client submitting requests to (remote) servers

o Servers (called “tasks” by convention)
• Queuing of incoming requests

• Entry points for service threads (called “functions”) with
priorities

• Forwarding function calls to other servers

o Hosts (called “processors”)

60

Example: Elements of an LQN model

61

User

Webserver connect() display() order()

Task (server):
• Functions (service call interfaces)
• Queuing of requests
• Priorities among functions

Function (service):
• Local execution time
• Call forwarding rate

Client:
• Request (service

call) rates

Processor:
• Deployment
• Scheduling

policy

CPU1

Call forwarding:
• Synchronous /

asynchronous

DB read() write()

CPU2

Example: Results of the analysis of an LQN model

62

User

Webserver connect() display() order()

Client:
• Request (service

call) rates

CPU1
DB read() write()

CPU2

Computed system level
properties (average and
worst-case):
• Request handling time
• Task throughput
• Processor utilization

Example: Layers in complex LQN models

Example: Architecture model with interactions

Classes and objects
with local parameters

Servers and
deployment

Interactions
(calls)

66

Example: Mapping architecture to analysis model

Classes (objects) Deployment Interactions

LQN performance
model

Model
transformation

67

Example: Analysis workflow

Architecture
design
patterns
can be
identified to
assign analysis
modules

Szinkron üzenetküldés:

Analysis

results

68

Model based quantitative evaluation

Supplementary topic: Dependability evaluation
(requires the knowledge of Stochastic Activity Networks or Petri nets)

69

Dependability modeling

70

Performance
model

Dependability
model

Safety analysis
model

Component
parameters

Local execution
time of functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection
coverage, …

Fault and dangerous
event occurrence rate

Relation
parameters

Call forwarding
rate, call
synchronization

Error propagation
probability,
conditions of error
propagation,
repair strategy

Hazard scenario,
hazard combinations

Model Queuing network Markov chain, Petri net Markov chain, Petri net

System
properties
(computed)

Request handling
time, throughput,
processor
utilization

System level reliability,
availability,
MTTF, MTTR, MTBF

System level hazard
occurrence rate,
criticality

Example: UML based dependability modeling

System level dependability model
(Stochastic Activity Network)

2,0E-07

4,0E-07

6,0E-07

8,0E-07

1,0E-06

1,2E-06

0,5 0,6 0,7 0,8 0,9

Control flow checking coverage

H
a

z
a

rd
 r

a
te

min

mean value

max

Dependability
model

construction

Analysis subnets

UML architecture model

Analysis results

Example: An extended architecture model

Components:

- Type (HW, SW)

- Role

* variant,

* manager

in a redundancy

structure

- Fault occurrence

properties:

* fault rate,

* latency,

* repair time

Relations:

- Fault propagation

properties:

* propagation

probability

Example: Elements of a SAN analysis model

 Stochastic Activity Network (SAN)

 Places: Represent conditions

o Valid if marked with a token

 Transitions: Events with cases

o Occurrence of a case removes
a token from each input place
and puts a token to each output place

o Rate of the event (or delay distribution)

o Probabilities of different cases

73

Example: Analysis model of a hardware resource

Occurrence of

permanent or

transient faults

Propagation of errors towards tasks

that use this resource (according to

the proportion of usage)

Detection of permanent

faults with periodic testing

Detected errors trigger a fault

handling (e.g., stopping)

Example: Analysis model of error propagation

Task execution rate with

potential error activation:

- Activated error,

remaining in the system

- Activated error,

overwritten

- Overwritten error

with no effect

Errors in the resource

relevant for the task

Example: Analysis model of a task

Error detection technique

with given rate and coverage

Undetected failure

becomes a hazard
Error detection technique

with given rate and coverage

Detected failures will trigger

fault handling (e.g., stopping)

task1_

Failure

Example: Analysis of hazard rate

Outcome: If the coverage falls below 50% then the SIL2
requirement (10-7 < Hazard rate < 10-6) is not satisfied

Example: Summary of the analysis steps

UML model
(extended)

Dependability
model (SAN)

UML → SAN

mapping

External solver
System level
properties

Redundancy and
fault handling

design patterns

Library of analysis
sub-models

Summary

 Motivation
o What is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Fault effects analysis

 Model based evaluation
o Performance evaluation

o Dependability modeling and analysis

79

