
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification of the Detailed Design

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Overview

 Preparation of the detailed design

o Software construction

o Component (module) design

 Verification techniques

o Verification criteria

o Static and dynamic techniques

 Introduction to formal verification

o Formal syntax and semantics

o Categorization of techniques

3

Preparation of the detailed design

Software construction

Component (module) design

4

Software construction

Software

construction

Software requirements

specification

Software construction

design

Software architecture

design

Software quality

assurance plan

Software integration

test plan

Software construction

verification report

“Local”

checking

For integration

testing

5

Software construction

 To be designed:
o System level algorithms for the interaction of components

o Global data structures

o Refinement of component structure if needed

 Design (description) language:
o Capturing interactions and information exchange (ordering, timeliness)

o Representing (abstract / concrete) data structures

o Characterized by modularity, abstraction, precision

o Formal, semi-formal, structured languages

 Specific characteristics (in critical systems):
o Fully defined interfaces

o Component and parameter size / complexity limits

o Information hiding

6

Software component (module) design

Software component

design

Software requirements

specification Software component

design

Software architecture

design

Software construction

design

Software quality

assurance plan

Software component

test plan

Software component

verification report

“Local”

checking

For component

testing

7

Software component design

 Detailed design of software components

o Algorithms

o Data structures

 Design (description) language

o Languages close to implementation

• Pseudo-code can also be used

o Formal, semi-formal, structured languages to describe
the behavior

• Control flow automata

• State machines, statecharts

• Activity diagrams

8

Verification techniques

Verification criteria

Static checking

Dynamic checking

9

Criteria for the verification of the detailed design

 Local characteristics of the design

o Completeness, consistency, verifiability, feasibility

 Conformance to the outputs of previous steps

o Behavioral properties specified earlier

• Safety properties: “Something bad never happens”

• Liveness properties: “Something good will eventually
happen”

o Conformance of abstract and refined behavior

• Simulation, bisimulation, refinement relations (see later)

 Completeness of the related test plans

10

Static checking of the detailed design

 Review: Checklist, error guessing
 Structure based analysis

o Control flow: complexity (e.g., McCabe metrics), structure
(e.g., unreachable states), …

o Data flow: initialization and use of variables, ordering of
access, …

o Boundary values: switching to different behavior

 Analysis of unwanted behavior
o Potential unwanted influences, e.g. through reserved

resources (CPU, memory)

 Symbolic execution
o Identifying and checking inputs that lead to the execution

of given program path(s)

11

Dynamic checking of the detailed design

 Prototype implementation and animation
o Detection of problematic cases that require particular

care in further analysis

 Simulation
o Can we simulate all possible executions?

 Formal verification: mathematically precise
techniques
o For proving properties

• “Exhaustive” checking of the complete behavior

o Formal methods
• Formal languages: formal syntax and semantics

• Formal techniques for verification

12

Introduction to formal verification

Formal syntax and semantics

Categorization of techniques

13

Formal verification

 Use of mathematically precise techniques for
verification (esp. from discrete mathematics,
mathematical logic)
o Formal language: Formal syntax and semantics

• Design description (structure, behavior)

• Property description (property specification)

o Mathematical algorithm for verification
• Checking the characteristics of the design (e.g., ambiguity)

• Checking changes in design (e.g., refinement)

• Conformance of design and property descriptions

 Crucial aspect: Formalization of the real problem
o Manual task
o Simplification, abstraction is needed (it has to be validated)

14

Formal syntax

 Mathematical description:

 BNF: BL ::= true | false | pq | pq

 Metamodel:

o Abstract syntax:
grammar rules

o Concrete syntax:
representation

15

 1 2 3 n

(, ,) and AP, where

AP= P,Q,R,...

S= s ,s ,s ,...s

R S S

L: S 2AP

KS S R L

16

Formal semantics (overview)

The meaning of the model (syntactic constructs) :

 Operational semantics: “for programmers”
o Defines what happens during operation (computation)

o Builds on simple notions of execution: states, events, actions, …

o E.g., to describe the state space for verification

 Axiomatic semantics: “for correctness proofs”
o Predicate language + set of axioms + inference rules

o E.g., for automated theorem prover tools

 Denotational semantics: “for compilers”
o Mapping to a known domain, driven by the syntax

• Known mathematical domain, e.g., computation sequence, control-flow graph,
state set, … and their operations (union, concatenation, etc.)

• Analysis of the model: analysis of the underlying domain

o E.g., for synthesis tasks

17

Models for formal verification

 Design models (with operational semantics)
o Engineering (design) models:

• E.g., DSL, SysML, UML with (semi-)formal semantics

o Higher-level formal models:
• Control oriented: automata, Petri nets, …
• Data processing oriented: dataflow networks, …
• Communication oriented: process algebra, …

o Basic mathematical models:
• KS, KTS, LTS, finite state automata, Büchi automata

 Property descriptions
o Higher level:

• Time diagram, message sequence chart (MSC) variants

o Lower level:
• First order logic, temporal logic, reference automaton

Typical formal verification techniques

Models /

techniques

Behavior description

(basic model)

Property description

(basic property)

Model checking Kripke structure (KS),

Kripke transition system (KTS)

Temporal logics,

first order logics

Equivalence /

refinement

checking

Labeled transition system (LTS),

finite automata

LTS, automata

(as reference

behavior)

Theorem

proving

Deduction system Theorem to be proved

(first order logic)

Static analysis

(abstract

interpretation)

Kripke transition system, Control

Flow Automaton (extracted from

the program)

Assertion

(first order logic)

18

The role of formal verification techniques

Model

checking

Equivalence/

refinement

checking

Abstract

interpretation

Theorem

proving

Theorem

proving

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

19

Advantages and limitations of the techniques

 Model checking, equivalence/refinement checking
 Fully automated, exhaustive checking

 Construction of diagnostic trace (for debugging)

 State space exploration (handled partially)

 Theorem proving
 Scalable for complex systems (e.g., by induction)

 High expressive power

 Interactive (need hints, e.g., to find a proof strategy)

 There is no diagnostic trace (counter-example)

 Static analysis (abstract interpretation)
 Handling state space explosion by abstraction

 Abstraction is hard to automate

20

21

Our goal

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

