
Software Verification and Validation (VIMMD052)

Formal verification: Basic formalisms

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Recap: The goal of formal verification

Basic structures

Kripke structure (KS)

Labeled transition system (LTS)

Kripke transition system (KTS)

Finite state automata (FSA)

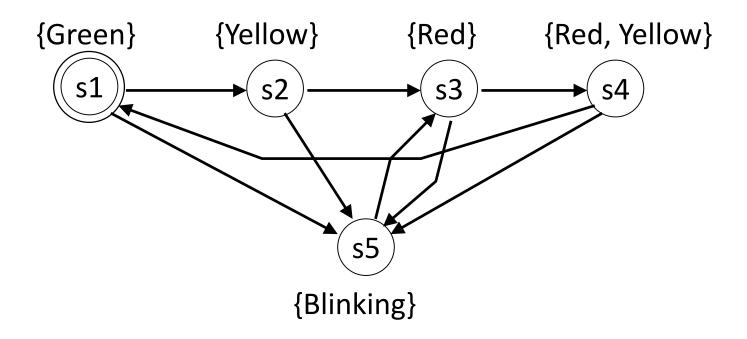
1. Kripke structure

Basic characteristics:

- Capturing properties of states: labeling by atomic propositions
- Possibly more than one labels per state
- Goal: characterizing the behavior through labeled states

Definition:

A Kripke structure KS over a set of atomic propositions $AP = \{P, Q, R, ...\}$ is a tuple (S, R, L) where


- $S = \{s_1, s_2, ..., s_n\}$ is a finite set of states, $I \subseteq S$ is the set of initial states,
- $R \subseteq S \times S$ is the set of transitions and
- $L: S \rightarrow 2^{AP}$ is the labeling of states by atomic propositions

Example: Kripke structure

Traffic light controller

- AP = {Green, Yellow, Red, Blinking}
- $S = \{s_1, s_2, s_3, s_4, s_5\}$

2. Labeled transition system

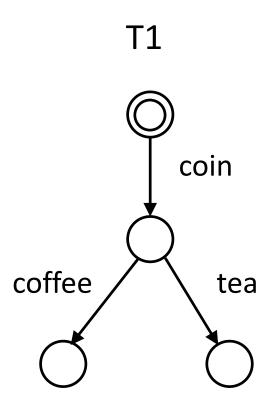
Basic characteristics:

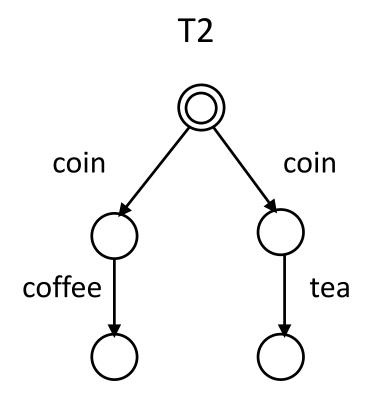
- Capturing properties of transitions: labeling by actions
- Exactly one action per transition
- Goal: characterizing communication and protocols by actions

Definition:

A labeled transition system LTS over a set of actions $Act = \{a, b, c, ...\}$ is a triple (S, Act, \rightarrow) where

- $S = \{s_1, s_2, ..., s_n\}$ is a finite set of states, $I \subseteq S$ is the set of initial states,
- \rightarrow : $S \times Act \times S$ is the set of transitions


We denote by $s \stackrel{a}{\rightarrow} s'$ iff $(s, a, s') \in \rightarrow$



Example: Labeled transition system

Vending machine

• Act = {coin, coffe, tea}

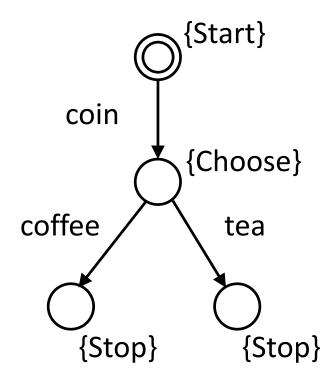
3. Kripke transition system

Basic characteristics:

- Capturing properties of both states and transitions:
 labeling by atomic propositions and actions
- Possibly more than one labels per state, exactly one action per transition

Definition:

A Kripke transition system KTS over a set of atomic propositions AP and set of actions Act is a tuple (S, \rightarrow, L) where


- $S = \{s_1, s_2, ..., s_n\}$ is a finite set of states, $I \subseteq S$ is the set of initial states,
- \rightarrow : $S \times Act \times S$ is the set of transitions
- $L: S \rightarrow 2^{AP}$ is the labeling of states by atomic propositions

Example: Kripke transition system

Vending machine with state labeling

- $Act = \{coin, coffee, tea\}$
- $AP = \{ Start, Choose, Stop \}$

4. Automata on finite words

- $A=(\Sigma, S, S_0, \rho, F)$ where
 - $\circ \Sigma$ alphabet, S states, S_0 initial states
 - $\circ \rho$ state transition relation, $\rho: S \times \Sigma \to 2^S$
 - F set of accepting states
- Run of an automaton
 - State sequence $r=(s_0, s_1, s_2, ... s_n)$ on the incoming word $w=(a_0, a_1, a_2, ... a_n)$
 - or is an accepting run if $s_n \in F$
 - A word w is accepted by the automaton, if there is an accepting run over w
- Language L accepted by the automaton A:

$$L(A)=\{ w \in \Sigma^* \mid w \text{ accepted} \}$$

Automata on infinite words

- Infinite words
 - Accepting state at the end of a word cannot be checked
- Büchi acceptance criterion:
 - On the incoming infinite word $w=(a_0, a_1, a_2, ...)$ there is an $r=(s_0, s_1, s_2, ...)$ infinite state sequence
 - lim(r)={s | s occurs infinitely many times,
 i.e., there is no j, such that ∀k>j:s≠s_k}
 - Accepting run: $\lim(r) \cap F \neq 0$
 - A word w is accepted by the automaton, if there is an accepting run over w (i.e., accepting state occurs infinitely often along w)
- Language L accepted by the automaton A:

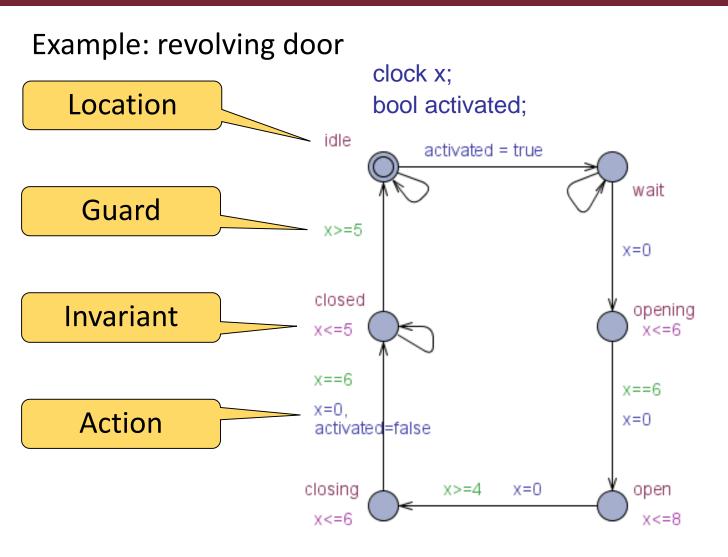
$$L(A)=\{ w \in \Sigma^* \mid w \text{ accepted} \}$$

Timed Automata: Finite State Automata with Time

Timed Automata in the UPPAAL model checker

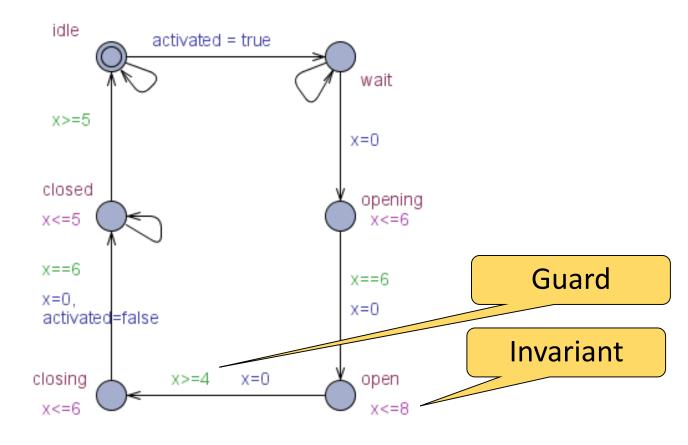
Timed Automata: Extension with variables

- Basic formalism: Finite state automaton (FSA)
 - Control locations (named) part of the state of the automaton
 - Edges define state transitions
- Language extension: integer variables
 - Variables with restricted domain (e.g. int[0, 10] id)
 - Constants (e.g., const int N = 6)
 - Integer arithmetic
- Use of variables: on edges
 - Guard: predicate over variables
 - The state transition can occur only if the predicate holds
 - Action: variable assignment



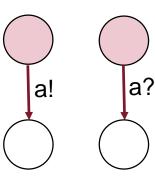
Timed automata: Extension with clock variables

- Goal: modeling time-dependent behavior
 - Time passes in given states of the component
 - Relative time measurement by resetting and reading timers;
 behavior depends on timer value (e.g., timeout)
- Language extension: clock variables
 - Measuring time elapse by a constant rate
- Use of clock variables on edges
 - Guard: predicate over clock variables
 - Action: resetting clocks to zero
- Use of clock variables on locations
 - Location invariant: predicate over clock variables;
 being in a location is valid until its invariant holds


Timed automata in UPPAAL

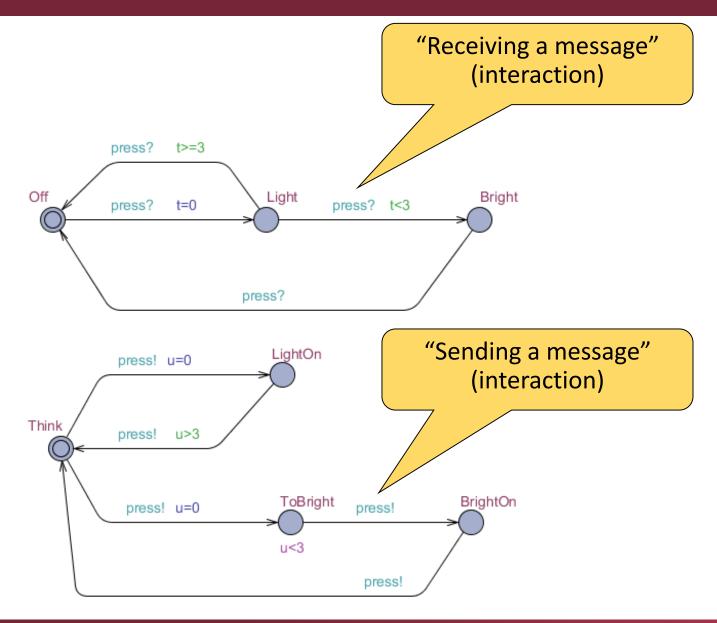
Role of guards and invariants

clock x;


Upon exiting location open, the value of clock is in interval [4, 8]

Extensions for modeling concurrency

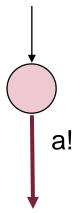
- Goal: modeling networks of automata
 - Interaction: Synchronization between automata transitions
 - Synchronous communication (handshake, rendezvous)
 - Sending and receiving a message occurs at the same time
 - Modeling of asynchronous behavior is possible by modeling channels
- Language extension: synchronized actions
 - Declaring channels for sending messages
 - Sending a message: ! operatorReceiving a message: ? operator
 - E.g.: synchronization labels a! and a? for channel a
- Parameterization
 - Arrays of channels: E.g. channel a[id] for a variable id
 - Useful in case of several participants and interactions

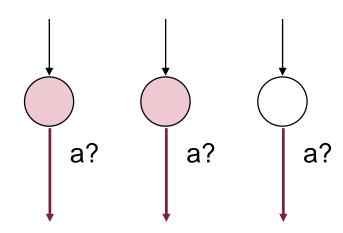

chan a

Example for clocks and synchronization

Declarations:
 clock t, u;
 chan press;
Switch:

User:

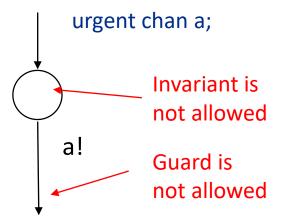




Further extensions: broadcast channel

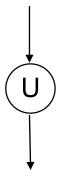
- Broadcast channel: one-to-many communication
 - Sending a message: unconditional
 - No handshake needed
 - Receiving a message: synchronized to the sender
 - All processes that are ready to receive the message will synchronize
 - Restriction: no guard on receiving edge

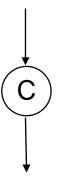
broadcast chan a;



Further extensions: urgent channel

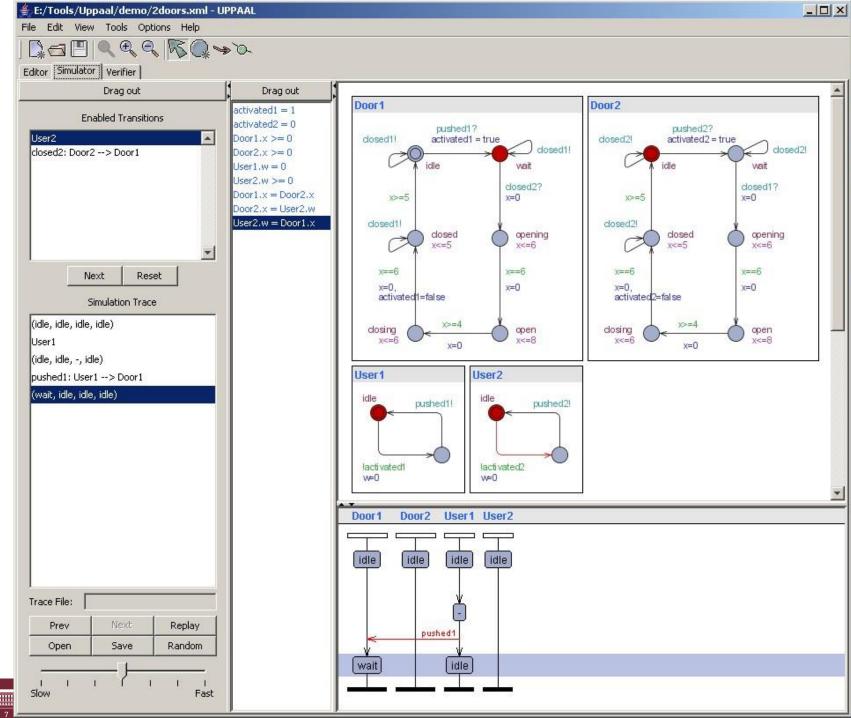
- Urgent channel: prohibit time delay (waiting for synchronization)
 - The synchronization is executed without delay (other edges might be traversed before, but only instantly)
 - Restrictions:
 - No invariant is allowed on a location that is the source of an edge labeled with the name of an urgent channel
 - No guard is allowed on an edge labeled with the name of an urgent channel




Further extensions: special locations

- Urgent location: prohibit time delay (waiting in location)
 - Time is not allowed to progress in the location
 - Equivalent model:
 - Introduce a clock variable: clock x
 - Reset clock on all incoming edges: x:=0
 - Add invariant: x<=0

- A committed location is urgent
- Committed state: at least one committed location is active
- The next transition from a committed state must involve at least one out-edge of an active committed location
- Simpler case: If only one committed location is active then its out-edge shall immediately follow its in-edge


The UPPAAL model checker

- Development (1999-):
 - Uppsala University, Sweden
 - Aalborg University, Denmark
- Web page (information, examples, download): http://www.uppaal.org/
- Related tools:
 - UPPAAL CoVer: Test generation
 - UPPAAL TRON: On-line testing
 - UPPAAL PORT: Component based modeling
 - O ...
- Commercial version: http://www.uppaal.com/

