
Budapest University of Technology and Economics 
Department of Measurement and Information Systems 

Budapest University of Technology and Economics 
Dept. of Measurement and Information Systems 

Formalizing and checking properties: 
Temporal logics CTL and CTL* 

Istvan Majzik 
majzik@mit.bme.hu 

1 

Software Verification and Validation (VIMMD052) 



Formal verification: Goals 

Formal 
model 

Formalized 
properties 

Formal verification 

OK Diagnostic trace 

t f 

“Informal” 
design 

“Informal” 
properties 

2 



Overview 

 Branching time temporal logics 

 CTL*: Computational Tree Logic * 

o Operators 

o Syntax and semantics 

 CTL: Computational Tree Logic 

o Operators 

o Syntax and semantics 

o Model checking CTL 

 Outlook: Modal mu-calculus 

o Operators 

3 



Illustration of linear and branching timelines 

s5   

  

s 2   s1   s 3   s4   

{Green}   {Yellow}   {Red}   {Red, Yellow}   

{Blinking}   

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

Branching 

Linear 

Logical time on a time line (a concrete run) 

Logical time:  

on branching  

timelines (all 

possible runs) 

4 



Recall: LTL operators on execution paths 

Construction of formulas: p, q, r, ... 
 Atomic propositions (elements of AP): P, Q, ... 
 Boolean operators: , , ,    

 : conjunction, : disjunction, : negation , : implication 

 Temporal operators: X, F, G, U informally: 
o X p: “neXt p” 

p holds in the next state 
o F p: “Future p” 

p holds eventually  
  on the path 

o G p: “Globally p” 
p holds in all states  
  on the path 

o p U q: “p Until q” 
p holds at least until q,  
  which holds on the path 

5 

P P P P Q 
P U Q 

P P P P P 
G P 

P 
F P 

P 
X P 



Branching: Path quantifiers 

In a given state,  
we formulate properties on the outgoing paths 
from the state: 

 

 E p (Exists p): there exists at least one path  
from the state for which p holds 
o Requirement on a single path 

o Existential operator 
 

 A p (for All p): for all paths from the state 
p holds 
o Requirement on all possible paths 

o Universal operator 

s 

s 

6 



Branching time temporal logics 

 CTL*: Computational Tree Logic * 
o An arbitrary combination of 

• path quantifiers (E, A), 

• and path-specific temporal operators (X, F, G, U) 

o E.g., EXXX p, A(X p  F q) 

 

 CTL: Computational Tree Logic 
o Specific CTL operators are formed: 

• Each temporal operator (X, F, G, U) is directly 
preceded by a path quantifier (E, A) 

o E.g. AX p, E(p U q) 

7 



CTL*: Computational Tree Logic * 

Operators 

Syntax and semantics 

8 



CTL* operators (informal) 

 Path quantifiers (interpreted over states): 

o A: “for All futures”, 
for all possible paths from the current state 

o E: “Exists future”, “for some future”,  
for at least one path from the current state 

 Path-specific operators (interpreted over paths): 

o X p: “neXt”, for the next state p holds 

o F p: “Future”, for a state along the path p holds 

o G p: “Globally”, for each state of the path p holds 

o p U q: “p Until q”, for a state of the path q will hold, 
and until then for all states p holds 

9 



CTL* formula examples 

   A(p  F q) 

10 

For all paths, 
we have that … 

if initially 
p holds, … 

then eventually … q holds. 

 A(p  G q) 

 For all possible paths: p holds (initially for the path)  
and q holds continuously for the path. 

 E(XXX p  F q)  

 There exists a path such that 

o p holds for its fourth state, or 

o eventually q holds 



CTL* syntax 

 State formulas: evaluated over states 
o S1: an atomic proposition P is a state formula 
o S2: for state formulas p and q, 

  p and pq are state formulas  
o S3: for a path formula p, 

  E p and A p are state formulas  
 

 Path formulas: evaluated over paths 
o P1: every state formula is a path formula 
o P2: for path formulas p and q, 

  p and pq are path formulas  
o P3: for path formulas p and q, 

  X p and p U q are path formulas  

 
Well-formed formulas in CTL*: state formulas 

11 



CTL* semantics: Notation 

 M = (S, R, L) Kripke structure 

  = (s0, s1, s2,…) a path of M where 
 s0∈I   and i≥0: (si, si+1)R 

o i = (si, si+1, si+2,…) the suffix of  from i 

 

 M, |= p (for a path formula p): 
in Kripke structure M, along path , p holds 

 

 M,s |= p (for a state formula p): 
in Kripke structure M, in state s, p holds 

12 



CTL* semantics: State formulas 

 S1:  

M,s |= P iff PL(s) 
 S2:  

M,s |= p iff not M,s |= p 

M,s |= pq iff M,s |= p and M,s |= q  
 S3:  

M,s |= E p (for path formula p)  
iff there exists a path =(s0, s1, s2,…) in M such that 
s=s0 and M, |= p 

M,s |= A p (for a path formula p)  
iff for all paths =(s0, s1, s2,…) in M such that 
s= s0 we have M, |= p 

13 



CTL* semantics: Path formulas 

 P1:  

M, |= p (for a state formula p) iff M, s0 |= p 

 P2:  

M, |= p    iff not M, |= p 

M, |= pq   iff M, |= p and M, |= q  

 P3:  

M,  |= X p iff M,1 |= p 

M,  |= p U q iff 

   j |= q for some j≥0 and 
  k |= p for all 0≤k<j 

14 



Background: Computational complexity of evaluation 

 Worst-case time complexity:  
at least O (|S|2  2|p|) 

o |S|2 number of transitions in the model  
      (Kripke structure) in the worst case 

o |p| number of temporal operators in the formula 

 The exponential complexity similar to LTL 

o Although temporal requirements tend to be short 

 Goal: simplifying CTL* 

o Should remain usable in practice 

o Should reduce worst-case time complexity 

15 



CTL: Computational Tree Logic 

Operators 

Syntax and semantics 

16 



CTL operators (informal introduction) 

Complex operators over states: 
 

 EX p: there exists a path where p holds in the next state 

 EF p: there exists a path where p holds in the future 

 EG p: there exists a path where p holds globally 

 E(p U q): there exists a path where p holds until q  
 eventually holds 

 

 AX p: for all paths p holds in the next state 

 AF p: for all paths p holds in the future 

 AG p: for all paths p holds globally 

 A(p U q): for all paths p holds until q eventually holds 

 

17 



Illustration for CTL operators (examples) 

 

18 

EX P EF P EG P 

AX P AF P AG P 

P 

P P 

P 

P 



CTL formulas (examples) 

 AG EF Reset   
 Starting from any reachable state*, 

a state can eventually be reached where Reset holds 
 AG AF Terminated  

 Starting from any reachable state*, 
a state will eventually be reached where Terminated holds 

 AG (Request  AF Reply)  
 Starting from any reachable state*, 

if we encounter a state where Request holds, 
then a state will eventually be reached where Reply holds. 

 AF AG Normal  
 Along all paths we will eventually reach a state 

from which Normal will always hold 

 EF AG Stopped 
 It is possible for the system to reach a state after which Stopped will 

hold in all states 
 
* AG refers to states reachable from the initial state  

19 



Example: Formalizing requirements (1) 

 Two processes in a system: P1 and P2 

 The local properties of processes: 

o In critical section: C1, C2 

o Not in critical section: N1, N2 

o Waiting to enter critical section: W1, W2 

 Atomic propositions: 
AP = {C1, C2, N1, N2, W1, W2} 

20 



Example: Formalizing requirements (2) 

 There is at most one process in the critical section: 
 AG ((C1  C2)) 

 If a process is waiting to enter the critical section, then it 
will eventually enter the critical section: 

 AG (W1  AF(C1)) 
 AG (W2  AF(C2)) 

 Processes enter the critical section in alternating order; 
one exits, then the other enters:  

 AG(C1  A(C1 U (C1  A((C1) U C2)))) 
 AG(C2  A(C2 U (C2  A((C2) U C1)))) 

21 

P2 in critical 
section 

P2 not in 
critical section 

P1 enters the 
critical section 



CTL syntax 

State formulas: The same as in CTL* 
o S1: an atomic proposition P is a state formula 

o S2: for state formulas p and q, 
  p and pq are state formulas  

o S3: for a path formula p, 
  E p and A p are state formulas  

 

Path formulas: Only a single rule 

o P0: for state formulas p and q, 
  X p and p U q are path formulas  

 

24 

• Path formulas cannot be directly nested (only state formulas in P0) 
• Path formulas are only used in rule S3: 

Path formulas X p and p U q can only be under E and A 



Derived operators and example formulas 

 Derived operators of CTL 
o EF p means E (true U p) 

o AF p means A (true U p) 

o EG p means AF (p) 

o AG p means EF (p) 
 

 CTL* but not CTL 
o E(X Red  F Yellow)  

 Boolean operator between path formulas 

o A(X G (Red  Yellow)), and E(XXX Red) 

 Nested path formulas 

 
26 



CTL formal semantics 

 State formulas: 
o Rules S1, S2, S3 (see CTL*) remain unchanged 

 Path formulas: 
o Rules P1, P2, P3 are replaced by a new rule P0: 

 

    P0: Only state formulas can be nested 
o M, |= X p where p is a state formula iff 

  M,s1 |= p 

o M, |= p U q where p,q are state formulas iff 
  M,sj

 |= q for some j≥0 and 
  M,sk | = p for all 0≤k<j 

 

Here we have state formulas according to syntax rule P0 

27 



Background: Computational complexity of evaluation 

 Worst case time complexity: O (|S|2|p|) 

o |S|2 number of transitions in the model  
      (Kripke structure) in the worst case 

o |p| number of temporal operators in the formula 

 Complexity is lower than in case of CTL* 

o No 2|p| factor 

o Expressive enough for many practical requirements 

• Safety requirements: AG 

• Liveness requirements: EF, AF 

 What is the cost? 

o CTL* is more expressive than CTL 

28 



Expressive power 

 A temporal logic is more expressive than another 
temporal logic iff  
o it is able to formalize all properties that the other logic 

can, 

o furthermore there is a property that can be expressed 
in the logic but not in the other logic 

 Experience so far: 
o LTL can not consider branching  

(implicitly „for all paths”) 

o CTL is more restricted than CTL*,  
hence it is less expressive 

o CTL* also includes all properties expressible in LTL 

29 



Expressive power – Formally 

 The expressive power of TL2 is at least as big as the 
expressive power of TL1 iff 
for all Kripke structure M and for all its states s: 

 

 

 

 Iff this relation holds mutually then TL2 and TL1 have the 
same expressive power. 

 

30 

1:

2 : ( , | , | )

p TL

q TL M s p M s q

 

    



Expressive power of LTL, CTL, CTL* 

CTL* 

(A)LTL CTL 

AF(p  Xq) 
(implicit A 
operator) 

A(p U q) 
(implicit A 
operator) 

AG EF p  

AF(p  Xq)  AG EF p, 

EXXX p,   A(X G (p  q)) 

Implicit A 
operator for paths 

31 



Expressive power of CTL and (A)LTL (in more detail) 

 Cannot be expressed in (A)LTL: AG EF p 
o In LTL there are no “possibilities” 
o In case of GF p: a state in which p holds shall be always 

reachable, while AG EF p allows paths without p 

 Cannot be expressed in CTL: FG p (stability) 
o AF EG p not good, since p will not hold on all paths 
o AF AG p is too strict: 

p q p 

… 

… … 

… 

AF AG p 

… 

FG p 

… 

… 

OK! 

OK! 

There is 
always a 
potential 
path for 
which AG p 
does not 
hold 

32 



FairCTL: Specifying ”fair” paths 

 Properties shall be checked on “fair” paths only 
o Trivial counterexamples should be omitted:  

e.g., all messages are lost, the system is always reset etc. 

 Fair paths are characterized by a q path formula in the form of: 
o GF r: The r state property occurs infinitely often (e.g., there is no starvation) 

o FG r: The r state property hold almost everywhere (e.g., stability is reached) 

 Modified path quantifiers for fair paths: 
o Aq : for all “fair” paths 

o Eq : there exists a “fair” path 

 Semantics of the modified path quantifiers: 
o AqF p means in CTL* A(q  F p) 

o EqG p means in CTL* E(q  G p) 

 Advantages of FairCTL: 
o Checking is restricted to “fair” paths 

o Complexity of checking FairCTL is less than the complexity of CTL* 

33 



CTL model checking 

Semantics-based approach 

34 



Model based verification by model checking 

Formal model: 
Kripke structure M 

Formalized property: 
CTL property p 

Model checker: 
M,s |= p 

OK Diagnostic trace 

t f 

35 



Model checking approach 

 Global model checking: 

o In case of CTL formula p: computing Sat(p), 
i.e., the set of states where p holds 

o This way sSat(p) can be checked for the initial state 

 Sat(p) is computed in an “incremental” way, labeling 
the states with the sub-expressions of p 

o First step: States are already labeled with the atomic 
propositions of the formula 

o Next step: Labeling with sub-expressions of p that are 
composed by an operator from the existing labels 

• E.g., if states are labeled with p and q then p U q label is assigned 

o End of labeling: The original formula p is used as label 

36 



Labeling using sub-expressions 

 Composition of a formula based on its syntactic structure 
(from inside out): 

    AF ( P  E (Q U R)) Q and R labels are 
included in the KS 

E(_ U _) composition is applied, 
E(Q U R) label will appear  

_  _ composition is applied,  
PE(Q U R) label will appear 

AF _ composition is applied, 
AF(PE(Q U R)) label will appear 

• Rules: Having labels p and q we establish where we have labels 

p,   pq,   EX p,   AX p,   E(p U q),   A(p U q) 

• We progress “outwards” from the inside of a complex formula 

37 



Labeling rules: Based on the semantics (1) 

 P holds in states s where PL(s) 

o Rule: P label is applied on states s where  
there is no label P 

 pq holds in states s where both p and q are true 

o Rule: pq label is applied on states s where  
both p and q labels are already present 

 

More complex rules for temporal operators 

 EX, AX refer to next states reachable from s 

 E( U ), A( U ) refer to paths reachable from s 

39 



Labeling rules: Based on the semantics (2) 

 EX p holds in states s which have at least one next state in which  
p is true 
o Rule: State s is labeled with EX p, if it has at least one next state  

which is already labeled by p 
 

 

 

 
 AX p holds in states s if p is true in all next states of s 

o Rule: State s is labeled with AX p, if all of its next states are already 
labeled by p 
 

 

 

 

s 
p 

s 
p 

EX p 

s 
p 

s 

AX p 

p 

p 

p 

p 

p 

40 



Labeling rules: Based on the semantics (3) 

 Where does E(p U q) hold? 

o Decomposition: E(p U q) = q  (p  EX E(p U q)) 

o „Recursive” expression (in finite paths the last state needs specific care) 

 Which states can be labeled with E(p U q)? 
o If state s is already labeled with q, or 

o if s is labeled with p, and there is at least one next state (cf. EX) that is 
already labeled with E(p U q) 

 An iterative labeling algorithm is derived: 
o E(p U q) label is applied first on states that are already labeled with q 

o Then their predecessor states are checked:  
If label p is on a predecessor state then it is labeled with E(p U q) 

o … and so on until the set of labeled states increases 

o This way those paths are explored that lead to state with label q through 
states that are labeled with p 

41 



Example: Labeling with E(P U Q) 

 Iteration is finished 
when the set of 
labeled states does 
not change 

{P,Q} 

P P P 

Kripke structure with 
initial labeling 

{P,Q} 

P P P 

E(P U Q) First step: Q 

{P,Q} 

P P P 

E(P U Q) 

E(P U Q) 

Second step:  

P  EX 

{P,Q} 

P P P 

E(P U Q) 

E(P U Q) E(P U Q) 

Third steps:  
P  EX 

42 

• Exploiting: 
E(P U Q) =  
Q  (P  EX E(P U Q)) 



Labeling rules: Based on the semantics (4) 

 Where does A(p U q) hold? 

o Decomposition: A(p U q) = q  (p  AX A(p U q)) 

o „Recursive” expression (on infinite paths) 

 Which states can be labeled with A(p U q)? 
o If state s is already labeled with q, or 

o if s is labeled with p, and all its next states are already labeled with A(p U q) 

 An iterative labeling algorithm is derived: 
o A(p U q) label is applied first on states that are labeled with q 

o Then their predecessor states shall be checked:  
If label p is on a predecessor state and all its next states are already labeled 
with A(p U q) then it is labeled with A(p U q) 

o … and so on until the set of labeled states can be increased 

 

This way all operators included in the formal syntax are covered. 

43 



Describing the labeling with set operations 

 We need sets of states that have proper successor states 
o E(p U q): “At least one successor state is labeled …” 
o A(p U q): “All successor states are labeled …” 

 Notation: If the set of states labeled with p is Z then  
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z} 

 i.e., at least one successor is in Z (already labeled) 

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z} 
 i.e., all successors are in Z (already labeled) 

 Example: Iterative labeling with E(P U Q) 
o Initial set:   X0    = {s | QL(s)} 

o Next iteration:   Xi+1= Xi  (preE(Xi)  {s | PL(s)})  
 

 

 

o End of iteration: If Xi+1= Xi, the set is not increased 

States labeled so 

far, plus …  

… their predecessor states 

that … 

… are labeled 

with P 

45 



CTL model checking: Summary 

 Global model checking: 
o States are labeled with (sub)expressions that hold in that state 

o More and more complex (sub)expressions are used as labels until the 
original property formula is used as label 

 Labeling with a (sub)expression: 
o Based on the existing labels (assigned in previous steps) applying 

labeling rules determined by the semantics of the operators 

o In case of EX, AX: Checking and labeling predecessor states 

o In case of E(p U q), A(p U q): Iterative labeling on paths 

• Initial set: Labeled on the basis of the q expressions 

• Iteration: Labeling p predecessor states on the basis of the semantics 

• End of iteration: The set of labeled states is constant 

 Mathematical basis for model checking: Fixed-point iterations 

47 



Supplementary material:  
Fixed-point iterations and mu-calculus 

49 



Recap: Describing the labeling with set operations 

 We need sets of states that have proper successor states 
o E(p U q): “At least one successor state is labeled …” 
o A(p U q): “All successor states are labeled …” 

 Notation: If the set of states labeled with p is Z then  
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z} 

 i.e., at least one successor is in Z (already labeled) 

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z} 
 i.e., all successors are in Z (already labeled) 

 Example: Iterative labeling with E(P U Q) 
o Initial set:   X0    = {s | QL(s)} 

o Next iteration:   Xi+1= Xi  (preE(Xi)  {s | PL(s)})  
 

 

 

o End of iteration: If Xi+1= Xi, the set is not increased 

States labeled so 

far, plus …  

… their predecessor states 

that … 

… are labeled 

with P 

50 



Background 

 Iteration steps on sets can be given as a mapping (function) 
: 2S  2S 
o Mapping from a set Xi to another set Xi+1:   Xi+1= (Xi) 
o The iteration ends when the set does not change: 

It is a fixed point in the application of the mapping, Xi+1== Xi 

 Definitions: 
o Least fixed point:   lfp (z) is the smallest zS,  

for which fixed point is reached: (z)=z 
o Greatest fixed point:   gfp (z) is the biggest zS,  

for which fixed point is reached: (z)=z 

 Theoretical background (theorems): 
o If S is finite then for monotonous  there exist lfp  and gfp  
o Computation of lfp:  lfp (z)= i

i () thus i0: lfp (z)= i0 () 
o Computation of gfp:  gfp (z)= i

i (S) thus j0: gfp (z)= j0 (S) 

51 



Mathematical theorems (1) 

 Theorem: Sat(EF p)= lfp (z) 

o where (z) = Sat(p)  preE(z)  recap: EF(p)=p  EX EF(p)  

o where preE(z) = {s | t: (s,t)R és tz}, as defined earlier 

 i.e., the set of states from which there is transition to a state in z 

 Applying the fixed point computation theorem: Union of sets 

o z0=  

o z1= (z0) = Sat(p)  preE() = Sat(p) 

o zi+1= (zi) = Sat(p)  preE(zi) = Sat(p)  {s | t: (s,t)R és tzi} 

o until zi+1== zi and here zi = lfp (z) = Sat(EF p) 

 Here the fixed point computation: 
looking for paths backwards to initial states from states satisfying p 

o First step: , from which Sat(p) is the first set 

o Then stepping backward on transitions according to preE(z) 

52 



Computation of the iteration 

z1 = Sat(p) preE(z1) 

 Sat(p) is the result of the first iteration step 

 Union with preE(z) “steps” backwards on paths,  
looking for initial states for paths that lead to Sat(p) 

53 

(z) = Sat(p)  preE(z) 

preE(preE(z1)) 



Mathematical theorems (2) 

 Theorem: Sat(EG p) = gfp (z) 
o where (z)= Sat(p)  preE(z)   recap: EG(p)=p  EX EG(p) 

o where preE(z)={s | t: (s,t)R és tz} as defined earlier 

 The iteration: Intersection of sets 
o z0= S 

o z1= (z0) = (S) = Sat(p)  preE(S) 

o zi+1= (zi)= Sat(p)  {s | t: (s,t)R és tzi} 

o until zi+1== zi and here zi = gfp (z) = Sat(EG p) 

 Here the fixed point computation: looking for paths on which 
p is true, backwards to initial states from states satisfying p 
o First step: S 

o Then stepping backward on transitions according to preE(z) 

 Sat(E(p U q)) computation is similar 

 
54 



Modal mu-calculus 

 Syntax of mu-calculus on KTS: 

  p::= P | Z | p | pp | [a]p | <a>p | Z.p | Z.p  
 

 It contains directly the fixed point operators 

o Z.p  is the greatest fixed point (where Z is a set variable, p is function of Z) 

• It is the biggest set S*S, that we get back when we compute p(Z) with the 
interpretation that Z is S* 

o Z.p  is the least fixed point (where Z is a set variable, p is function of Z) 

 Rule: Z shall occur in the scope of an even number of negations 
o This guarantees that functions (for iteration) will be monotonous,  

this way Sat(p) can be computed with iteration 

 Expressive power is higher than CTL* 
o If a temporal logic is covered by the mu-calculus, then its model checking is 

possible by applying fixed-point iterations 

 Worst case time complexity of checking: O(|S|2|p|a) 
o Here a is the number of nested alternating (i.e., least / greatest) fixed point 

operations („alternation depth”) 

55 



CTL and the modal mu-calculus 

 In case of CTL, the alternation depth of the corresponding  
mu-calculus formula is 1 

o E.g., AG EF p = Z.(Y.(p  EX(Y))AX(Z)) 

o There is no dependence between the nested fixed point operations: 
The “inner” fixed point formula does not depend on the variables of the 
“outer” fixed point formula 

o This way Sat(p) can be evaluated “from inside to outside”, computation of 
the iterations belonging to the operators one by one 

 In general case: There may be dependencies 

o E.g., Z.Y.(<b>Z  <a>Y), means that there is a path consisting of a and b 
actions, where b occurs infinitely often 

o There is mutual dependency between the “inner” and “outer” fixed point 
formula 

o The iterations depend on each other, new inner iteration shall be computed 
in each step of the outer iteration 

56 



Summary 

 Branching time temporal logics 

 CTL*: Computational Tree Logic * 
o Operators 

o Syntax and semantics 

 CTL: Computational Tree Logic 
o Operators 

o Syntax and semantics 

oModel checking 

 Outlook: Modal mu-calculus 
o Fixed-point iterations 

oMu-calculus operators 

57 


