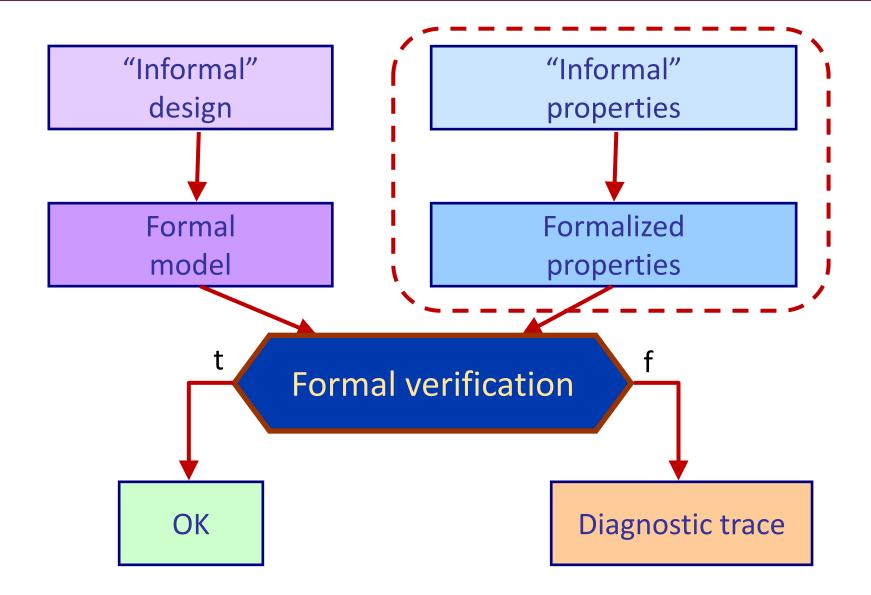
Formalizing and checking properties: Temporal logics CTL and CTL*

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

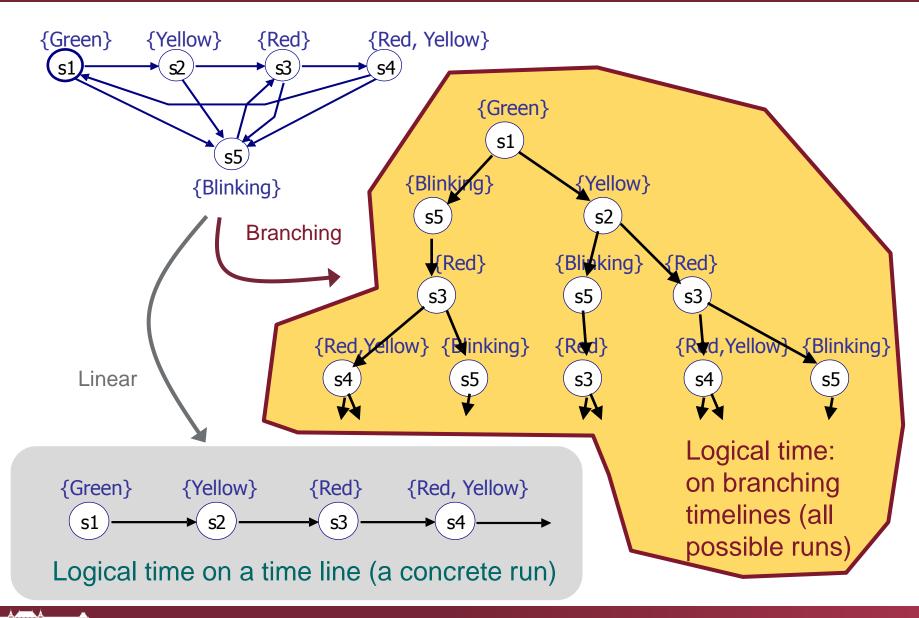
Formal verification: Goals



Overview

- Branching time temporal logics
- CTL*: Computational Tree Logic *
 - Operators
 - Syntax and semantics
- CTL: Computational Tree Logic
 - Operators
 - Syntax and semantics
 - Model checking CTL
- Outlook: Modal mu-calculus
 - Operators

Illustration of linear and branching timelines



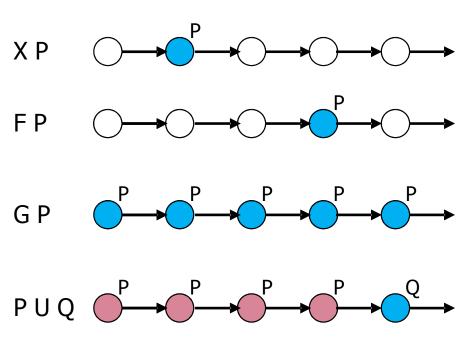
Recall: LTL operators on execution paths

Construction of formulas: p, q, r, ...

- Atomic propositions (elements of AP): P, Q, ...
- Boolean operators: \land , \lor , \neg , \Rightarrow

 \land : conjunction, \lor : disjunction, \neg : negation , \Rightarrow : implication

- Temporal operators: X, F, G, U informally:
 - X p: "neXt p"
 p holds in the next state
 - F p: "Future p"
 p holds eventually
 on the path
 - G p: "Globally p"
 p holds in all states
 on the path
 - p U q: "p Until q"
 p holds at least until q, which holds on the path



In a given state,

we formulate properties on the outgoing paths from the state:

- E p (Exists p): there exists at least one path from the state for which p holds
 - Requirement on a single path
 - Existential operator
- A p (for All p): for all paths from the state p holds
 - Requirement on all possible paths
 - Universal operator

Branching time temporal logics

CTL*: Computational Tree Logic *

An arbitrary combination of

- path quantifiers (E, A),
- and path-specific temporal operators (X, F, G, U)

 \circ E.g., EXXX p, A(X p \vee F q)

CTL: Computational Tree Logic

• Specific CTL operators are formed:

- Each temporal operator (X, F, G, U) is directly preceded by a path quantifier (E, A)
- O E.g. AX p, E(p U q)

CTL*: Computational Tree Logic *

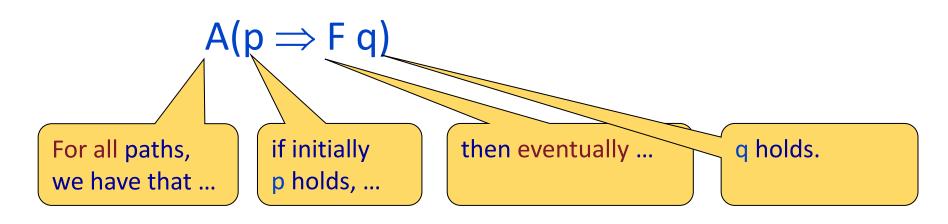
Operators Syntax and semantics

CTL* operators (informal)

Path quantifiers (interpreted over states):

- A: "for All futures",
 - for all possible paths from the current state
- E: "Exists future", "for some future", for at least one path from the current state
- Path-specific operators (interpreted over paths):
 - o X p: "neXt", for the next state p holds
 - F p: "Future", for a state along the path p holds
 - G p: "Globally", for each state of the path p holds
 - p U q: "p Until q", for a state of the path q will hold, and until then for all states p holds

CTL* formula examples



■ A(p ∧ G q)

For all possible paths: p holds (initially for the path) and q holds continuously for the path.

• E(XXX $p \lor Fq$)

There exists a path such that

- o p holds for its fourth state, or
- eventually q holds

CTL* syntax

- State formulas: evaluated over states
 - **S1**: an atomic proposition **P** is a state formula
 - S2: for state formulas p and q,
 - $\neg p$ and $p \land q$ are state formulas
 - **S3**: for a path formula **p**,

E p and A p are state formulas

- Path formulas: evaluated over paths
 - P1: every state formula is a path formula
 - **P2**: for path formulas p and q, $\neg p$ and $p \land q$ are path formulas
 - P3: for path formulas p and q,
 X p and p U q are path formulas

Well-formed formulas in CTL*: state formulas

CTL* semantics: Notation

- M = (S, R, L) Kripke structure
- $\pi = (s_0, s_1, s_2,...)$ a path of M where $s_0 \in I$ and $\forall i \ge 0$: $(s_i, s_{i+1}) \in R$

 $\circ \pi^{i} = (s_{i}, s_{i+1}, s_{i+2},...)$ the suffix of π from i

- M,π | = p (for a path formula p): in Kripke structure M, along path π, p holds
- M,s |= p (for a state formula p): in Kripke structure M, in state s, p holds

CTL* semantics: State formulas

```
S1:
   M,s |= P \text{ iff } P \in L(s)
• S2:
   M,s = \neg p iff not M,s = p
   M,s |= p \land q iff M,s |= p and M,s |= q
S3:
   M,s = E p (for path formula p)
      iff there exists a path \pi = (s_0, s_1, s_2,...) in M such that
      s=s<sub>0</sub> and M,\pi |= p
   M,s = A p (for a path formula p)
      iff for all paths \pi = (s_0, s_1, s_2,...) in M such that
      s= s<sub>0</sub> we have M,\pi |= p
```

CTL* semantics: Path formulas

• P1:

```
M,\pi \mid = p (for a state formula p) iff M, s<sub>0</sub> \mid = p
```

P2:

 $M,\pi \mid = \neg p$ iff not $M,\pi \mid = p$ $M,\pi \mid = p \land q$ iff $M,\pi \mid = p$ and $M,\pi \mid = q$

P3:

```
M, \pi \mid = X p iff M,\pi^1 \mid = p
M, \pi \mid = p U q iff
\pi^j \mid = q for some j \ge 0 and
\pi^k \mid = p for all 0 \le k < j
```

Background: Computational complexity of evaluation

 Worst-case time complexity: at least O (|S|² × 2^{|p|})

|S|² number of transitions in the model
 (Kripke structure) in the worst case

- |p| number of temporal operators in the formula
- The exponential complexity similar to LTL
 - Although temporal requirements tend to be short
- Goal: simplifying CTL*
 - Should remain usable in practice
 - Should reduce worst-case time complexity

CTL: Computational Tree Logic

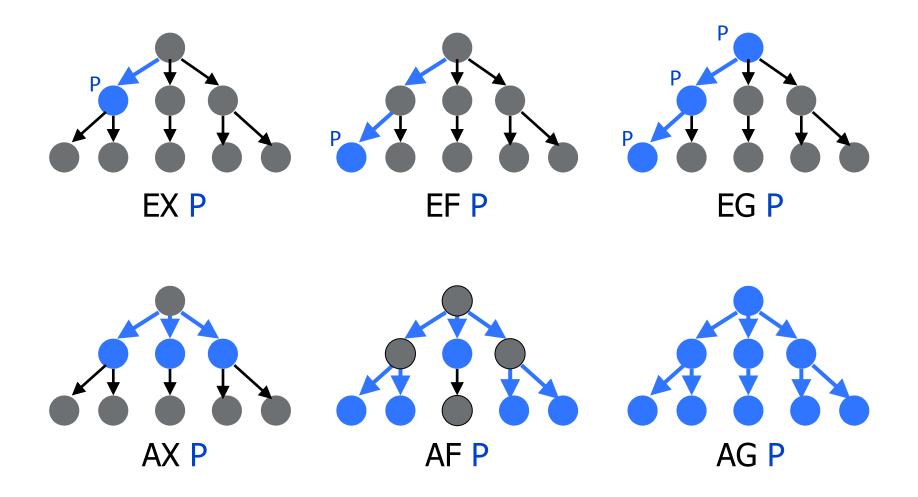
Operators Syntax and semantics

CTL operators (informal introduction)

Complex operators over states:

- EX p: there exists a path where p holds in the next state
- EF p: there exists a path where p holds in the future
- EG p: there exists a path where p holds globally
- E(p U q): there exists a path where p holds until q eventually holds
- AX p: for all paths p holds in the next state
- AF p: for all paths p holds in the future
- AG p: for all paths p holds globally
- A(p U q): for all paths p holds until q eventually holds

Illustration for CTL operators (examples)



CTL formulas (examples)

AG EF Reset

Starting from any reachable state^{*}, a state can eventually be reached where Reset holds

AG AF Terminated

Starting from any reachable state^{*}, a state will eventually be reached where Terminated holds

■ AG (Request ⇒ AF Reply)

Starting from any reachable state^{*}, if we encounter a state where Request holds, then a state will eventually be reached where Reply holds.

AF AG Normal

Along all paths we will eventually reach a state from which Normal will always hold

EF AG Stopped

It is possible for the system to reach a state after which Stopped will hold in all states

* AG refers to states reachable from the initial state

Example: Formalizing requirements (1)

- Two processes in a system: P1 and P2
- The local properties of processes:

In critical section: C1, C2

Not in critical section: N1, N2

Waiting to enter critical section: W1, W2

Atomic propositions:
 AP = {C1, C2, N1, N2, W1, W2}

Example: Formalizing requirements (2)

- There is at most one process in the critical section:
 AG (¬(C1 ∧ C2))
- If a process is waiting to enter the critical section, then it will eventually enter the critical section:
 AG (W1 ⇒ AF(C1))
 AG (W2 ⇒ AF(C2))
- Processes enter the critical section in alternating order; one exits, then the other enters:

 $AG(C1 \Rightarrow A(C1 \cup (\neg C1 \land A((\neg C1) \cup C2))))$ $AG(C2 \Rightarrow A(C2 \cup (\neg C2 \land A((\neg C2) \cup C1))))$

P2 in critical section

P2 not in critical section

P1 enters the critical section

CTL syntax

State formulas: The same as in CTL*

- **S1**: an atomic proposition **P** is a state formula
- \circ S2: for state formulas p and q, ¬p and p∧q are state formulas
- S3: for a path formula p,
 E p and A p are state formulas

Path formulas: Only a single rule

• P0: for state formulas p and q,
 X p and p U q are path formulas

• Path formulas cannot be directly nested (only state formulas in PO)

Path formulas are only used in rule S3:
 Path formulas X p and p U q can only be under E and A

Derived operators and example formulas

- Derived operators of CTL
 EF p means E (true U p)
 AF p means A (true U p)
 EG p means ¬AF (¬p)
 AG p means ¬EF (¬p)
- CTL* but not CTL
 - \circ E(X Red \vee F Yellow)

Boolean operator between path formulas

○ A(X G (Red ∧ Yellow)), and E(XXX Red)

Nested path formulas

CTL formal semantics

State formulas:

• Rules **S1**, **S2**, **S3** (see CTL*) remain unchanged

Path formulas:

• Rules **P1**, **P2**, **P3** are replaced by a new rule **P0**:

P0: Only state formulas can be nested \circ M,π |= X p where p is a state formula iff M,s₁ |= p \circ M,π |= p U q where p,q are state formulas iff M,s_i |= q for some j≥0 and

 $M, s_k | = p \text{ for all } 0 \le k \le j$

Here we have state formulas according to syntax rule PO

Background: Computational complexity of evaluation

- Worst case time complexity: O (|S|²×|p|)
 - |S|² number of transitions in the model (Kripke structure) in the worst case
 - o p number of temporal operators in the formula
- Complexity is lower than in case of CTL*
 - No 2^{|p|} factor
 - Expressive enough for many practical requirements
 - Safety requirements: AG
 - Liveness requirements: EF, AF
- What is the cost?
 - CTL* is more expressive than CTL

Expressive power

- A temporal logic is more expressive than another temporal logic iff
 - it is able to formalize all properties that the other logic can,
 - furthermore there is a property that can be expressed in the logic but not in the other logic
- Experience so far:
 - LTL can not consider branching (implicitly "for all paths")
 - CTL is more restricted than CTL*, hence it is less expressive
 - CTL* also includes all properties expressible in LTL

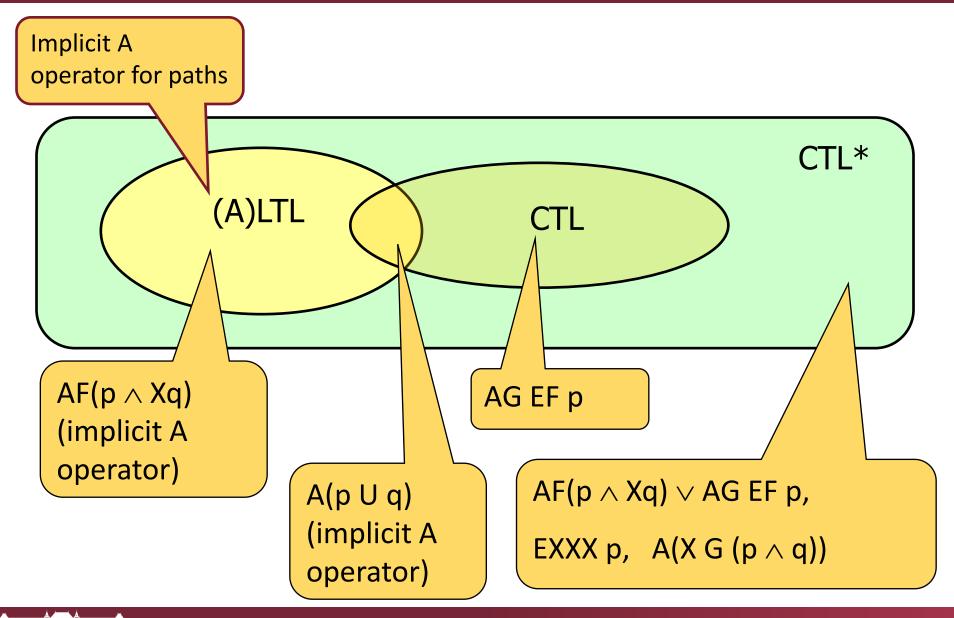
Expressive power – Formally

 The expressive power of TL2 is at least as big as the expressive power of TL1 iff for all Kripke structure M and for all its states s:

> $\forall p \in TL1:$ $\exists q \in TL2: (M, s \models p \iff M, s \models q)$

 Iff this relation holds mutually then TL2 and TL1 have the same expressive power.

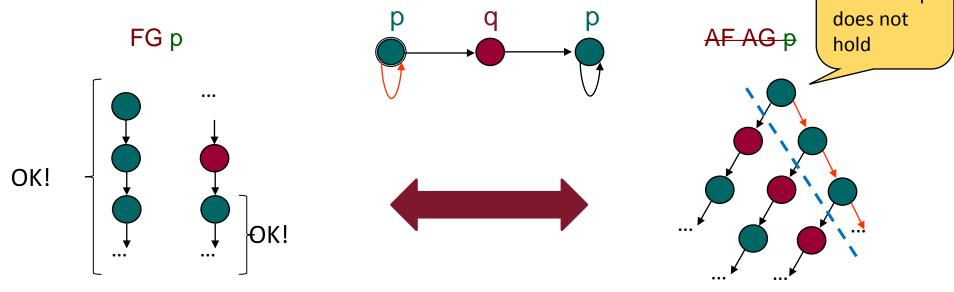
Expressive power of LTL, CTL, CTL*



Expressive power of CTL and (A)LTL (in more detail)

- Cannot be expressed in (A)LTL: AG EF p
 - In LTL there are no "possibilities"
 - In case of GF p: a state in which p holds shall be always reachable, while AG EF p allows paths without p
- Cannot be expressed in CTL: FG p (stability)

 AF EG p not good, since p will not hold on all paths
 AF AG p is too strict:



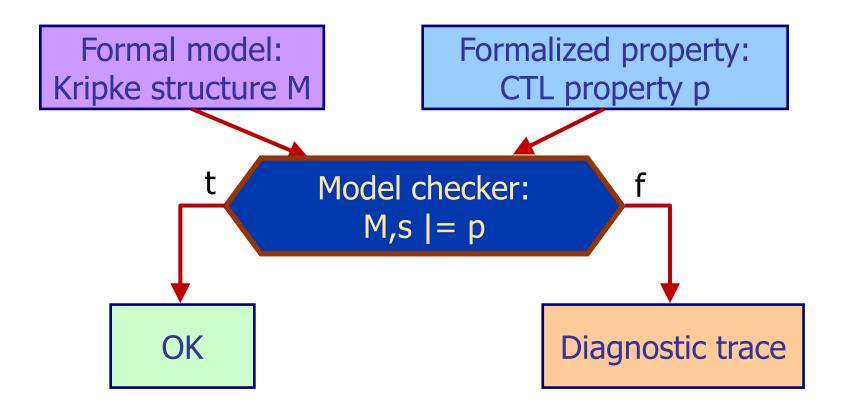
FairCTL: Specifying "fair" paths

- Properties shall be checked on "fair" paths only
 - Trivial counterexamples should be omitted:
 e.g., all messages are lost, the system is always reset etc.
- Fair paths are characterized by a q path formula in the form of:
 - GF r: The r state property occurs infinitely often (e.g., there is no starvation)
 - FG r: The r state property hold almost everywhere (e.g., stability is reached)
- Modified path quantifiers for fair paths:
 - A_q : for all "fair" paths
 - \circ E_q : there exists a "fair" path
- Semantics of the modified path quantifiers:
 - \circ A_qF p means in CTL* A(q \Rightarrow F p)
 - \circ E_qG p means in CTL* E(q \land G p)
- Advantages of FairCTL:
 - Checking is restricted to "fair" paths
 - Complexity of checking FairCTL is less than the complexity of CTL*

CTL model checking

Semantics-based approach

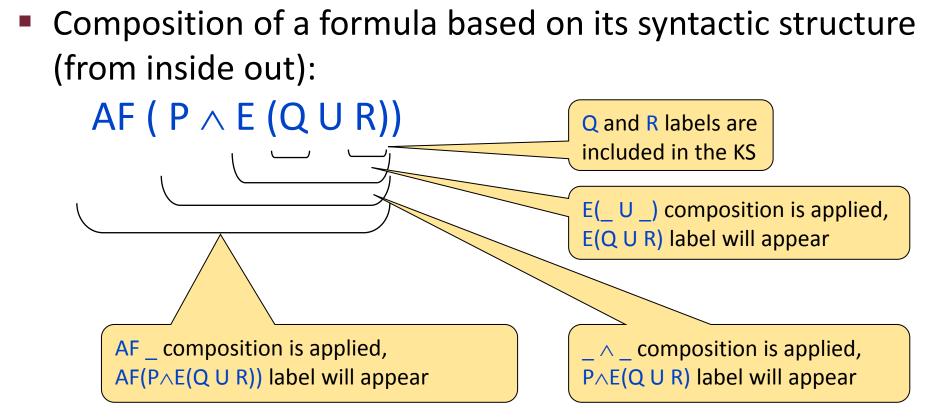
Model based verification by model checking



Model checking approach

- Global model checking:
 - In case of CTL formula p: computing Sat(p),
 i.e., the set of states where p holds
 - \circ This way s∈Sat(p) can be checked for the initial state
- Sat(p) is computed in an "incremental" way, labeling the states with the sub-expressions of p
 - First step: States are already labeled with the atomic propositions of the formula
 - Next step: Labeling with sub-expressions of p that are composed by an operator from the existing labels
 - E.g., if states are labeled with p and q then p U q label is assigned
 - End of labeling: The original formula p is used as label

Labeling using sub-expressions



- Rules: Having labels p and q we establish where we have labels
 ¬p, p∧q, EX p, AX p, E(p U q), A(p U q)
- We progress "outwards" from the inside of a complex formula

Labeling rules: Based on the semantics (1)

• $\neg P$ holds in states s where $P \notin L(s)$

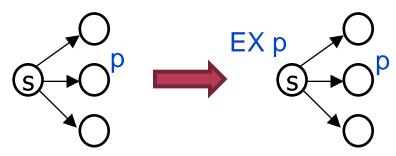
 Rule: ¬P label is applied on states s where there is no label P

p^q holds in states s where both p and q are true
 Rule: p^q label is applied on states s where
 both p and q labels are already present

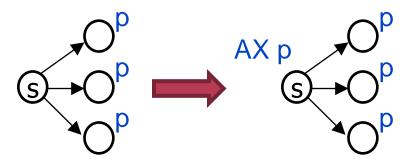
More complex rules for temporal operators EX, AX refer to next states reachable from s E(U), A(U) refer to paths reachable from s

Labeling rules: Based on the semantics (2)

- EX p holds in states s which have at least one next state in which p is true
 - Rule: State s is labeled with EX p, if it has at least one next state which is already labeled by p



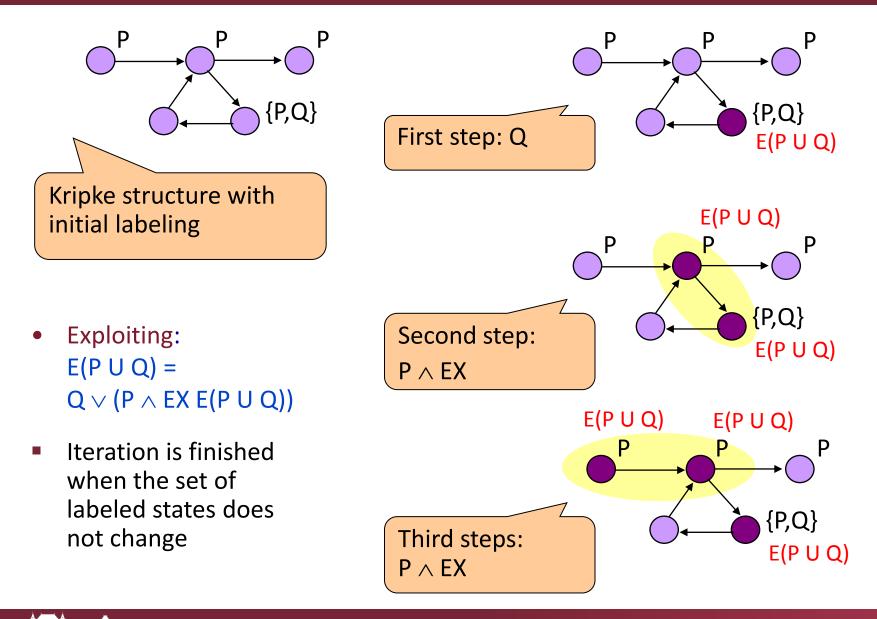
- AX p holds in states s if p is true in all next states of s
 - Rule: State s is labeled with AX p, if all of its next states are already labeled by p



Labeling rules: Based on the semantics (3)

- Where does E(p U q) hold?
 - Decomposition: $E(p \cup q) = q \vee (p \land EX E(p \cup q))$
 - "Recursive" expression (in finite paths the last state needs specific care)
- Which states can be labeled with E(p U q)?
 - If state s is already labeled with q, or
 - if s is labeled with p, and there is at least one next state (cf. EX) that is already labeled with E(p U q)
- An iterative labeling algorithm is derived:
 - E(p U q) label is applied first on states that are already labeled with q
 - Then their predecessor states are checked:
 If label p is on a predecessor state then it is labeled with E(p U q)
 - $\circ \ \ ...$ and so on until the set of labeled states increases
 - This way those paths are explored that lead to state with label q through states that are labeled with p

Example: Labeling with E(P U Q)



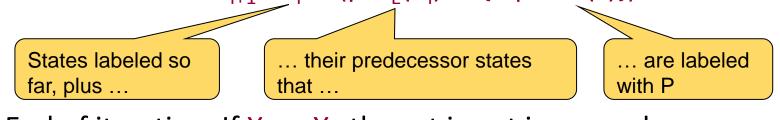
Labeling rules: Based on the semantics (4)

- Where does A(p U q) hold?
 - Decomposition: $A(p \cup q) = q \vee (p \land AX \land A(p \cup q))$
 - "Recursive" expression (on infinite paths)
- Which states can be labeled with A(p U q)?
 - If state s is already labeled with q, or
 - o if s is labeled with p, and all its next states are already labeled with A(p U q)
- An iterative labeling algorithm is derived:
 - A(p U q) label is applied first on states that are labeled with q
 - Then their predecessor states shall be checked:
 If label p is on a predecessor state and all its next states are already labeled with A(p U q) then it is labeled with A(p U q)
 - $\circ \ \ ...$ and so on until the set of labeled states can be increased

This way all operators included in the formal syntax are covered.

Describing the labeling with set operations

- We need sets of states that have proper successor states
 E(p U q): "At least one successor state is labeled ..."
 A(p U q): "All successor states are labeled ..."
- Notation: If the set of states labeled with p is Z then
 - pre_E(Z) = {s∈S | there exists s', such that (s,s')∈R and s'∈Z}
 i.e., at least one successor is in Z (already labeled)
 - pre_A(Z) = {s∈S | for all s' where (s,s')∈R: s'∈Z}
 i.e., all successors are in Z (already labeled)
- Example: Iterative labeling with E(P U Q)
 - Initial set: $X_0 = \{s \mid Q \in L(s)\}$
 - Next iteration: $X_{i+1} = X_i \cup (pre_E(X_i) \cap \{s \mid P \in L(s)\})$



 \circ End of iteration: If $X_{i+1} = X_i$, the set is not increased

CTL model checking: Summary

- Global model checking:
 - States are labeled with (sub)expressions that hold in that state
 - More and more complex (sub)expressions are used as labels until the original property formula is used as label
- Labeling with a (sub)expression:
 - Based on the existing labels (assigned in previous steps) applying labeling rules determined by the semantics of the operators
 - In case of EX, AX: Checking and labeling predecessor states
 - In case of E(p U q), A(p U q): Iterative labeling on paths
 - Initial set: Labeled on the basis of the q expressions
 - Iteration: Labeling p predecessor states on the basis of the semantics
 - End of iteration: The set of labeled states is constant
- Mathematical basis for model checking: Fixed-point iterations

Supplementary material: Fixed-point iterations and mu-calculus

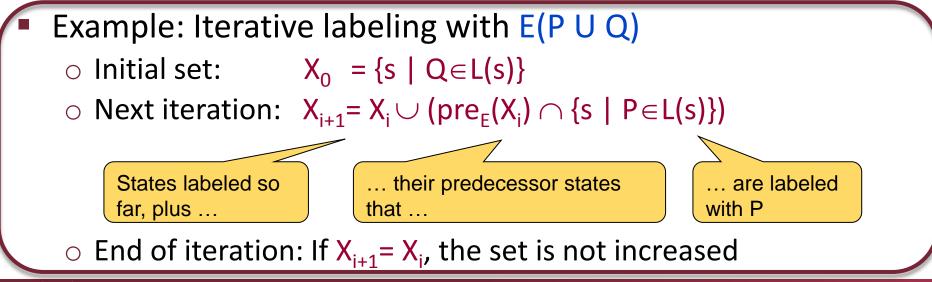
Recap: Describing the labeling with set operations

- We need sets of states that have proper successor states
 E(p U q): "At least one successor state is labeled ..."
 - A(p U q): "All successor states are labeled ..."
- Notation: If the set of states labeled with p is Z then
 - $pre_E(Z) = \{s \in S \mid there exists s', such that (s,s') \in R and s' \in Z\}$

i.e., at least one successor is in Z (already labeled)

○ $pre_A(Z) = {s \in S | for all s' where (s,s') \in R: s' \in Z}$

i.e., all successors are in Z (already labeled)



Background

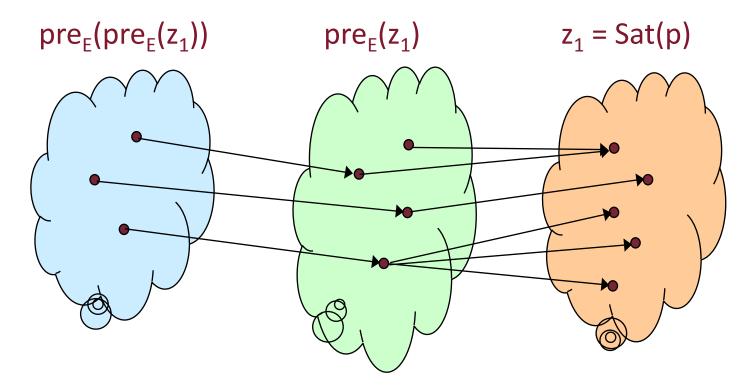
- Iteration steps on sets can be given as a mapping (function) $\tau: 2^{s} \rightarrow 2^{s}$
 - Mapping from a set X_i to another set X_{i+1} : $X_{i+1} = \tau(X_i)$
 - The iteration ends when the set does not change: It is a fixed point in the application of the mapping, X_{i+1}== X_i
- Definitions:
 - Least fixed point: If $\tau(z)$ is the smallest $z \subseteq S$, for which fixed point is reached: $\tau(z)=z$
 - Greatest fixed point: gfp $\tau(z)$ is the biggest $z \subseteq S$, for which fixed point is reached: $\tau(z)=z$
- Theoretical background (theorems):
 - $\circ\,$ If S is finite then for monotonous τ there exist lfp τ and gfp τ
 - Computation of Ifp: Ifp $\tau(z) = \bigcup_i \tau^i(\emptyset)$ thus $\exists i_0$: Ifp $\tau(z) = \tau^{i_0}(\emptyset)$
 - Computation of gfp: gfp $\tau(z) = \bigcap_i \tau^i(S)$ thus $\exists j_0: gfp \tau(z) = \tau^{j_0}(S)$

Mathematical theorems (1)

- Theorem: Sat(EF p)= lfp τ(z)
 - where $τ(z) = Sat(p) ∪ pre_E(z)$ recap: EF(p)=p ∨ EX EF(p)
 - where $pre_E(z) = \{s \mid \exists t: (s,t) \in R \text{ és } t \in z\}$, as defined earlier
 - i.e., the set of states from which there is transition to a state in z
- Applying the fixed point computation theorem: Union of sets
 - $\circ z_0 = \emptyset$
 - $o z_1 = τ(z_0) = Sat(p) ∪ pre_E(∅) = Sat(p)$
 - $\circ z_{i+1} = \tau(z_i) = Sat(p) \cup pre_E(z_i) = Sat(p) \cup \{s \mid \exists t: (s,t) \in R \text{ és } t \in z_i\}$
 - \circ until $z_{i+1} = z_i$ and here $z_i = Ifp \tau(z) = Sat(EF p)$
- Here the fixed point computation: looking for paths backwards to initial states from states satisfying p
 - First step: \emptyset , from which Sat(p) is the first set
 - Then stepping backward on transitions according to pre_E(z)

Computation of the iteration

$\tau(z) = Sat(p) \cup pre_{E}(z)$



- Sat(p) is the result of the first iteration step
- Union with pre_E(z) "steps" backwards on paths, looking for initial states for paths that lead to Sat(p)

Mathematical theorems (2)

- Theorem: Sat(EG p) = gfp τ(z)
 - \circ where $\tau(z)$ = Sat(p) \cap pre_E(z) recap: EG(p)=p ∧ EX EG(p)
 - where $pre_{E}(z)=\{s \mid \exists t: (s,t) \in R \text{ és } t \in z\}$ as defined earlier
- The iteration: Intersection of sets
 - $\circ z_0 = S$
 - $z_1 = τ(z_0) = τ(S) = Sat(p) ∩ pre_E(S)$
 - $\circ \ z_{i+1} = \tau(z_i) = Sat(p) \cap \{s \ | \ \exists t: (s,t) \in R \ \text{és} \ t \in z_i\}$
 - \circ until $z_{i+1} = z_i$ and here $z_i = gfp \tau(z) = Sat(EG p)$
- Here the fixed point computation: looking for paths on which p is true, backwards to initial states from states satisfying p

First step: S

- Then stepping backward on transitions according to pre_E(z)
- Sat(E(p U q)) computation is similar

Modal mu-calculus

- Syntax of mu-calculus on KTS:
 p::= P | Z | ¬p | p∧p | [a]p | <a>p | μZ.p | νZ.p
- It contains directly the fixed point operators
 - \circ vZ.p is the greatest fixed point (where Z is a set variable, p is function of Z)
 - It is the biggest set S*⊆S, that we get back when we compute p(Z) with the interpretation that Z is S*
 - \circ µZ.p is the least fixed point (where Z is a set variable, p is function of Z)
- Rule: Z shall occur in the scope of an even number of negations
 - This guarantees that functions (for iteration) will be monotonous, this way Sat(p) can be computed with iteration
- Expressive power is higher than CTL*
 - If a temporal logic is covered by the mu-calculus, then its model checking is possible by applying fixed-point iterations
- Worst case time complexity of checking: O(|S|²×|p|^a)
 - Here a is the number of nested alternating (i.e., least / greatest) fixed point operations ("alternation depth")

CTL and the modal mu-calculus

- In case of CTL, the alternation depth of the corresponding mu-calculus formula is 1
 - E.g., AG EF p = $vZ.(\mu Y.(p \lor EX(Y)) \land AX(Z))$
 - There is no dependence between the nested fixed point operations: The "inner" fixed point formula does not depend on the variables of the "outer" fixed point formula
 - This way Sat(p) can be evaluated "from inside to outside", computation of the iterations belonging to the operators one by one
- In general case: There may be dependencies
 - \circ E.g., vZ.µY.(Z \lor <a>Y), means that there is a path consisting of a and b actions, where b occurs infinitely often
 - There is mutual dependency between the "inner" and "outer" fixed point formula
 - The iterations depend on each other, new inner iteration shall be computed in each step of the outer iteration

Summary

- Branching time temporal logics
- CTL*: Computational Tree Logic *
 - Operators
 - Syntax and semantics
- CTL: Computational Tree Logic
 - Operators
 - Syntax and semantics
 - Model checking
- Outlook: Modal mu-calculus
 o Fixed-point iterations
 - Mu-calculus operators