Model checking CTL: Symbolic technique

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Formal verification of TL properties

Recap: Techniques for model checking

- HML model checking: Tableau-based

- LTL model checking: Based on automata-theory

- CTL model checking: Iterative labeling

Problems

- The state space (e.g., Kripke structure) to check can be huge
- Concurrent systems exhibit a large state space: Combinatorial explosion in the number of possible orderings of independent state transitions

- How can we analyze large state spaces?
- Promise: CTL model checking: 10^{20}, sometimes even 10^{100} states
- What kind of technique can deliver this promise?

Example for large state space: Dining philosophers

- Concurrent system with non-trivial behavior
- May have deadlock, livelock
- State space grows fast

\#Philosophers	\#States
16	$4,7 \cdot 10^{10}$
28	$4,8 \cdot 10^{18}$
\ldots	\ldots
200	$>10^{40}$
1000	$>10^{200}$
\ldots	\ldots

$$
2^{64}=1,8 \cdot 10^{19}
$$

Techniques for handling large state space

CTL model checking: Symbolic technique

State enumeration based technique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions) with ROBDD representation
Operations on sets of states	Efficient operations on ROBDDs

- Model checking of invariants: Bounded model checking
- Model checking to a given depth in the state space: Searching for counterexamples with bounded length
- A detected counterexample is always valid
- Non-existing counterexample does not imply correctness
- Background: Searching satisfying valuations for Boolean formulas with SAT techniques

Symbolic model checking

Recap: Iteration during the $\mathrm{E}(\mathrm{P} \cup \mathrm{Q})$ labeling

- Exploiting: $E(P \cup Q)=$
$Q \vee(P \wedge E X E(P \cup Q))$
- Iteration continues when the set of labeled states grows (until a fixed point is reached)

Recap: Model checking with set operations

- We need sets of states that have proper successor states
- $\mathrm{E}(\mathrm{p} \cup \mathrm{q})$: "At least one successor state is labeled ..."
- A(p Uq): "All successor states are labeled ..."
- Notation: If the set of states labeled with p is Z then
$\circ \operatorname{pre}_{\mathrm{E}}(\mathrm{Z})=\left\{s \in S \mid\right.$ there exists s^{\prime}, such that $\left(s, s^{\prime}\right) \in R$ and $\left.s^{\prime} \in Z\right\}$
i.e., at least one successor is in Z (already labeled)

○ $\operatorname{pre}_{A}(Z)=\left\{s \in S \mid\right.$ for all s^{\prime} where $\left.\left(s, s^{\prime}\right) \in R: s^{\prime} \in Z\right\}$
i.e., all successors are in Z (already labeled)

- Example: Iterative labeling with $\mathrm{E}(\mathrm{P} \cup \mathrm{Q})$
- Initial set: $\quad X_{0}=\{s \mid Q \in L(s)\}$
\circ Next iteration: $X_{i+1}=X_{i} \cup\left(\operatorname{pre}_{E}\left(X_{i}\right) \cap\{s \mid P \in L(s)\}\right)$

States labeled so far, plus ...

- End of iteration: If $X_{i+1}=X_{i}$, the set is not increased

Main idea

- Representation of sets of states and operations on sets of states with Boolean functions
- States are not explicitly enumerated
- Encoding a state: with a bit-vector
- To encode each state in S we need at least $n=\left\lceil\log _{2}|S|\right\rceil$ bits, so choose n such that $2^{n} \geq|S|$
- Encoding a state / set of states: Boolean function with n variables, called characteristic function
- Characteristic function: $\mathrm{C}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$
- The characteristic function of a set is 1 (true) for a bit-vector iff the state encoded by the bit-vector is in the given set of states
- In model checking, we will perform operations on characteristic functions instead of sets

Example: Characteristic function of states

Variables: x, y

Characteristic functions of states:

State s1:

$$
C_{s 1}(x, y)=(\neg x \wedge \neg y)
$$

State s2:

$$
C_{s 2}(x, y)=(\neg x \wedge y)
$$

State s3:

$$
C_{s 3}(x, y)=(x \wedge y)
$$

Characteristic function for a set of states:
Set of states $\{\mathrm{s} 1, \mathrm{~s} 2\}$:

$$
C_{\{s 1, s 2\}}=C_{s 1} \vee C_{s 2}=(\neg x \wedge \neg y) \vee(\neg x \wedge y)
$$

Construction of characteristic functions

- For a state $s: C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Let the encoding of s be the bit-vector $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, where $u_{i} \in\{0,1\}$ Goal: $C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ should return be true only for ($\left.u_{1}, u_{2}, \ldots, u_{n}\right)$
Construction of $C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: with operator \wedge :

- x_{i} is an operand if $u_{i}=1$
- $\neg x_{i}$ is an operand if $u_{i}=0$

Example: for state s with encoding (0,1): $C_{s}\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}$

- For a set of states $\mathrm{Y} \subseteq \mathrm{S}: \mathrm{C}_{\mathrm{Y}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ Goal: $C_{\gamma}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ should be true for $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ iff $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in Y$ Construction of $C_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with operator \vee :

$$
C_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=V_{s \in Y} C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- For sets of states in general:

$$
C_{Y \cup W}=C_{Y} \vee C_{W}, \quad C_{Y \cap W}=C_{Y} \wedge C_{W}
$$

Construction of characteristic functions (cont'd)

- For state transitions: C_{r}

- For transition $r=(s, t)$, where $s=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $t=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ characteristic function in the form $\mathrm{C}_{\mathrm{r}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}^{\prime}{ }_{1}, \mathrm{x}^{\prime}{ }_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- $2^{*} n$ variables, "primed" variables denote the target state
- Goal: C_{r} should be true iff $\mathrm{x}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}}$ and $\mathrm{x}_{\mathrm{i}}{ }^{\prime}=\mathrm{v}_{\mathrm{i}}$

Construction of C_{r} :

$$
C_{r}=C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge C_{t}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Example: Characteristic functions of transitions

$(0,0)$

State s1 encoded by (0,0):

$$
C_{s 1}(x, y)=(\neg x \wedge \neg y)
$$

State s2 encoded by (0,1):

$$
C_{s 2}(x, y)=(\neg x \wedge y)
$$

Transition (s1,s2) \in R, i.e., $(0,0) \rightarrow(0,1)$:

$$
C_{(s 1, s 2)}=(\neg x \wedge \neg y) \wedge\left(\neg x^{\prime} \wedge y^{\prime}\right)
$$

Transition relation R :

$$
\begin{aligned}
R\left(x, y, x^{\prime}, y^{\prime}\right)= & \left(\neg x \wedge \neg y \wedge \neg x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(x \wedge y \wedge \neg x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(x \wedge y \wedge \neg x^{\prime} \wedge \neg y^{\prime}\right)
\end{aligned}
$$

Construction of characteristic functions (cont'd)

- Construction of $\operatorname{pre}_{E}(Z): \operatorname{pre}_{E}(Z)=\{s \mid \exists \mathrm{t}:(\mathrm{s}, \mathrm{t}) \in \mathrm{R}$ and $\mathrm{t} \in \mathrm{Z}\}$
- Representation of Z : function C_{Z}
- Representation of R: function $C_{R}=\vee_{r \in R} C_{r}$
- $\operatorname{pre}_{\mathrm{E}}(\mathrm{Z})$: find predecessor states for states of Z

$$
\mathrm{C}_{\mathrm{pre}_{\mathrm{E}}(Z)}=\exists_{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}} \mathrm{C}_{R} \wedge \mathrm{C}_{Z}^{\prime}
$$

where $\exists_{x} C=C[1 / x] \vee C[0 / x]$ ("existential abstraction")

- Model checking with set operations: implemented with operations on Boolean functions
- Union of sets: Disjunction of functions (v)
- Intersection of sets: Conjunction of functions (\wedge)
- Construction of pre $_{\mathrm{E}}(Z)$: Complex operation (existential abstraction)

Representation of Boolean functions

Canonic form: ROBDD

Reduced, Ordered Binary Decision Diagram

Conceptual construction of ROBDD (overview):

- Binary decision tree: Represents binary decisions given by the valuation of function variables
- BDD: Identical subtrees are merged
- OBDD: Evaluation of variables in the same order on every branch
- ROBDD: Reduction of redundant nodes
- If both two outcomes (branches) lead to the same node

ROBDD in more detail

Decision trees

Decision tree for Boolean functions:
Substitution (valuation) of a variable is a decision

- Example: $f(x, y)$
- Valuation of all variables results in 1 or 0 in leaf nodes

- We get a binary decision diagram (BDD),
if we merge all identical subtrees
- We get an ordered binary decision diagram (OBDD),
if we substitute the variables in the same order during decomposition
- We get a reduced ordered binary decision diagram (ROBDD), if we remove redundant nodes (where both decisions lead to the same node)

Example: From binary decision tree to ROBDD

ROBDD

ROBDD properties

- Directed, acyclic graph with one root and two leaves
- Values of the two leaves are 1 and 0 (true and false)
- Every node is assigned a test variable
- From every node, two edges leave
- One for the value 0 (notation: dashed arrow)
- The other for the value 1 (notation: solid arrow)
- On every path, substituted variables are in the same order
- Isomorphic subgraphs are merged
- Nodes from with both edges would point to the same node are reduced

For a given function, two ROBDDs with the same variable ordering are isomorphic

Variable ordering for ROBDDs

- Size of ROBDD
- For some functions it is very compact
- For others (such as XOR) it may have an exponential size
- The order of variables has a great impact on the ROBDD size
- A different order may cause an order of magnitude difference
- Problem of finding an optimal ordering is NP-complete (\rightarrow heuristics)
- Memory requirements:
- If the ROBDD is built by combining functions (e.g., representing product automata), intermediate nodes may appear which can be reduced later

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
- Variables of the functions should be the same and in the same order
- Recursive construction of the f op t ROBDD using f and t ROBDDs (here op is a Boolean operator)

Summary: Model checking with ROBDDs

- Implementing model checking:
- Model checking algorithm: Operations on sets of states (labeling)
- Symbolic technique: Instead of sets, use Boolean characteristic functions
- Efficient implementation: Boolean functions handled as ROBDDs
- Benefits
- ROBDD is a canonical form (equivalence of functions is easy to check)
- Algorithms can be accelerated (with caching)
- Reduced storage requirements (depends on variable ordering!)

Dining philosophers:

Number of Philosophers	Size of state space	Number of ROBDD nodes
16	$4,7 \cdot 10^{10}$	747
28	$4,8 \cdot 10^{18}$	1347

Instead of storing 10^{18} states the ROBDD needs $\sim 21 \mathrm{kB}$!

Supplementary material: Construction and operations on ROBDD

Boolean functions as binary decision trees

- Substitution (valuation) of a variable is a decision
- Notation: if-then-else

$$
x \rightarrow f_{1}, f_{0}=\left(x \wedge f_{1}\right) \vee\left(\neg x \wedge f_{0}\right)
$$

- The result is the value of f_{1} if x is true (1)
- The result is the value of f_{0} if x is false (0)
- x is called the test variable, checking its value is a test
- Shannon decomposition of Boolean functions:

$$
\left.\begin{array}{r}
f=x \rightarrow f[1 / x], f[0 / x] \\
\quad \text { let } f_{x}=f[1 / x] ; f_{\underline{x}}=f[0 / x]
\end{array}\right\} f=x \rightarrow f_{x,}, f_{\underline{x}}
$$

- The function is decomposed with if-then-else
- The test variable is substituted, it will not appear in $f_{x}, f_{\underline{x}}$
- Repeat until there is a variable left

Example: Manual construction of an ROBDD

Let

$$
f=(a \Leftrightarrow b) \wedge(c \Leftrightarrow d)
$$

Variable ordering: a, b, c, d

- $f=a \rightarrow f_{a}, f_{a}$

$$
f_{a}=(1 \Leftrightarrow b) \wedge(c \Leftrightarrow d), f_{a}=(0 \Leftrightarrow b) \wedge(c \Leftrightarrow d)
$$

- $f_{a}=b \rightarrow f_{a, b}, f_{a, b}$

$$
\mathrm{f}_{\mathrm{a}, \mathrm{~b}}=(1 \Leftrightarrow 1) \wedge(\mathrm{c} \Leftrightarrow \mathrm{~d})=(\mathrm{c} \Leftrightarrow \mathrm{~d})
$$

$$
\mathrm{f}_{\mathrm{a}, \mathrm{~b}}=(1 \Leftrightarrow 0) \wedge(\mathrm{c} \Leftrightarrow \mathrm{~d})=0
$$

- $f_{\underline{a}}=b \rightarrow f_{\underline{a}, b}, f_{a, \underline{b}}$ $\mathrm{f}_{\mathrm{a}, \mathrm{b}}$ and $\mathrm{f}_{\mathrm{a}, \underline{b}}$ are
$\mathrm{f}_{\mathrm{a}, \mathrm{b}}=(0 \Leftrightarrow 1) \wedge(\mathrm{c} \Leftrightarrow \mathrm{d})=0$
$\mathrm{f}_{\underline{a}, \underline{b}}=(0 \Leftrightarrow 0) \wedge(\mathrm{c} \Leftrightarrow \mathrm{d})=(\mathrm{c} \Leftrightarrow \mathrm{d})$
- $f_{a, b}=c \rightarrow f_{a, b, c}, f_{a, b, \underline{c}}$

$$
f_{a, b, c}=(1 \Leftrightarrow d), f_{a, b, \underline{c}}=(0 \Leftrightarrow d)
$$

- $f_{a, b, c}=d \rightarrow f_{a, b, c, d}, f_{a, b, c, d}$
$f_{a, b, c, d}=(1 \Leftrightarrow 1)=1$,
$f_{a, b, c, \underline{d}}=(1 \Leftrightarrow 0)=0$
- $f_{a, b, \underline{c}}=d \rightarrow f_{a, b, c, d}, f_{a, b, c, d}$
$f_{a, b, c, d}=(0 \Leftrightarrow 1)=0, \quad f_{a, b, c, d}=(0 \Leftrightarrow 0)=1$

Storing an ROBDD in memory

- Nodes of the ROBDD are identified by Ids (indices)
- The ROBDD is stored in a table $\mathrm{T}: \mathrm{u} \rightarrow(\mathrm{i}, \mathrm{l}, \mathrm{h})$:
- u: index of node
- i: index of variable ($x_{i}, i=1 \ldots . n$)

○ I: index of the node reachable through edge corresponding to 0

- h: index of the node reachable through edge corresponding to 1

\mathbf{u}	\mathbf{i}	\mathbf{I}	\mathbf{h}
0			
1			
2	4	1	0
3	4	0	1
4	3	2	3
5	2	4	0
6	2	0	4
7	1	5	6

Storing an ROBDD in memory

\mathbf{u}	\mathbf{i}	\mathbf{l}	\mathbf{h}
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$	4	1	0
$\mathbf{3}$	4	0	1
$\mathbf{4}$	3	2	3
$\mathbf{5}$	2	4	0
$\mathbf{6}$	2	0	4
$\mathbf{7}$	1	5	6

Handling ROBDDs 1.

- Defined operations:

- init(T)
- Initializes table T
- Only the terminal nodes 0 and 1 are in the table
o add(T,i,l,h):u
- Creates a new node in T with the provided parameters
- Returns its index u
o var(T,u):i
- Returns from T the index i of the node u
- $\operatorname{low}(\mathrm{T}, \mathrm{u}): I$ and $\operatorname{high}(\mathrm{T}, \mathrm{u}):$:h
- Returns the index I (or h) of the node reachable from the node with index u through the edge corresponding to 0 (or 1, respectively)

Handling ROBDDs 2.

- To look up ROBDD nodes, we use another table $\mathrm{H}:(\mathrm{i}, \mathrm{l}, \mathrm{h}) \rightarrow \mathrm{u}$
- Operations:
- init(H)
- Initializes an empty H
o member(H,i,l,h):t
- Checks if the triple ($\mathrm{i}, \mathrm{l}, \mathrm{h}$) is in H ; t is a Boolean value
- lookup(H,i,l,h):u
- Looks up the triple (i,l,h) from table H
- Returns the index u of the matching node
o insert(H,i,l,h,u)
- Inserts a new entry into the table

Handling ROBDDs 3.

Creating nodes: $\mathrm{Mk}(\mathrm{i}, \mathrm{l}, \mathrm{h})$

- Where i is the index of variable, l and h are the branches
- If I=h, i.e. the branches would lead to the same node
- then we don't need a new node
- we can return any branches
- If H already contains a triple (i,l,h)
- then we don't need a new node
\Rightarrow there exists an isomorphic subtree, return that
- If H does not contain such a triple (i,l,h)
- then we need to create it and return its index

Mk(i,l,h) \{
if $l=h$ then
return l;
else if member (H, i, l, h) then return lookup (H,i,l,h);
else \{
u=add(T,i,l,h);
insert($\mathrm{H}, \mathrm{i}, \mathrm{l}, \mathrm{h}, \mathrm{u}$) ;
return u;
\}
\}

Handling ROBDDs 4.

Building an ROBDD: Build(f) and Build' (t, i) recursive helper function

Build(f) \{
init(T); init(H);
return Build' (f,1);
\}
Build' (t,i) \{
if $i>n$ then
if $t==f a l s e$ then return 0 else return 1 else \{v0 $=$ Build' $\left(t\left[0 / x_{i}\right], i+1\right)$;
v1 = Build' (t[1/xici+1); return $M k(i, v 0, v 1)\}$
\}

Recursive building;
Mk() will check isomorphic subtrees

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
- Variables of the functions should be the same and in the same order
- Equivalence for functions f, t (op is a Boolean operator):

1) $\mathrm{fopt}=\left(x \rightarrow \mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\underline{\underline{ }}}\right)$ op $\left(\mathrm{x} \rightarrow \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\underline{\underline{ }}}\right)=\mathrm{x} \rightarrow\left(\mathrm{f}_{\mathrm{x}}\right.$ op $\left.\mathrm{t}_{\mathrm{x}}\right),\left(\mathrm{f}_{\underline{\underline{x}}}\right.$ op $\left.\mathrm{t}_{\underline{x}}\right)$
op

Operations on ROBDDs (cont’d)

- Boolean operators can be evaluated directly on ROBDDs
- Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Boolean operator):

1) $\mathrm{fopt}=\left(x \rightarrow \mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\underline{\underline{ }}}\right)$ op $\left(\mathrm{x} \rightarrow \mathrm{t}_{\mathrm{x}}, \underline{t_{\underline{x}}}\right)=\mathrm{x} \rightarrow\left(\mathrm{f}_{\mathrm{x}}\right.$ op $\left.\mathrm{t}_{\mathrm{x}}\right),\left(\mathrm{f}_{\underline{\underline{x}}}\right.$ op $\left.\mathrm{t}_{\underline{x}}\right)$

- Additional rules (in case of missing variables due to reduction):

2) f op $t=\left(x \rightarrow f_{x}, f_{\underline{x}}\right)$ opt $=x \rightarrow\left(f_{x} \circ p t\right)$, ($\left.f_{\underline{x}} \circ p t\right)$
3) $\mathrm{fopt}=\mathrm{fop}\left(\mathrm{x} \rightarrow \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\underline{\underline{x}}}\right)=\mathrm{x} \rightarrow\left(\mathrm{fop} \mathrm{t}_{\mathrm{x}}\right)$, $\left(\mathrm{fop} \mathrm{t}_{\underline{\underline{x}}}\right)$

- Based on these rules App(op,i,j) can be defined recursively
- where i, j : indices of the root nodes of operands
- Drawback: slow
- worst-case 2^{n} exponential

Accelerated operation

- Let G(op,i,j) be a cache table that contains the results of App(op,i,j) (these are nodes)
- The four cases of the algorithm:
- Both nodes are terminal: return a terminal based on the Boolean operation (e.g. $0 \wedge 1=0$)
- If the variable indices for both operands are the same, then call App(op,i,j) with the 0 branches and with the 1 branches based on equivalence (1)
- If one variable index is less, then that node is paired with the 0 and 1 branches of the other node based on rules (2) or (3)

Pseudo-code of the operation

```
Apply(op,f,t) {
    init(G);
    return App(op,f,t);
}
App(op,u1,u2) {
    if (G(op,u1,u2) != empty) then return G(op,u1,u2);
    else if (u1 in {0,1} and u2 in {0,1}) then u = op(u1,u2);
    else if (var(u1) = var(u2)) then
            u=Mk (var(u1), App(op,low(u1),low(u2)),
                    App(op,high(u1),high(u2)));
    else if (var(u1) < var(u2)) then
        u=Mk (var(u1), App(op,low(u1),u2),App (op,high(u1),u2));
    else (* if (var(u1) > var(u2)) then *)
            u=Mk (var(u2), App(op,u1,low(u2)),App(op,u1,high(u2)));
    G(op,u1,u2)=u;
    return u;
}
```

Example: Performing operation ($f \wedge t$)

Example: Performing operation (f $\wedge \mathrm{t}$)

Example: Result of operation ($f \wedge t$)

Substitute a variable in an ROBDD

Substitute (bind) variables with constants (e.g. $\left.(\neg \mathrm{x} \wedge \mathrm{y})^{[\mathrm{ly}=1]}=\neg \mathrm{x}\right)$: The value of x_{j} should be b in the ROBDD rooted in u

```
Restrict(u,j,b) {
        return Res(u,j,b);
}
```

$\operatorname{Res}(u, j, b)\{$
if $\operatorname{var}(u)>j$ then return u;
else if $\operatorname{var}(u)<j$ then
return Mk (var(u),
Res (low(u),j,b),
Res (high (u),j,b));
else
if $b=0$ then return Res (low(u),j,b) else
return Res (high (u), j,b);

