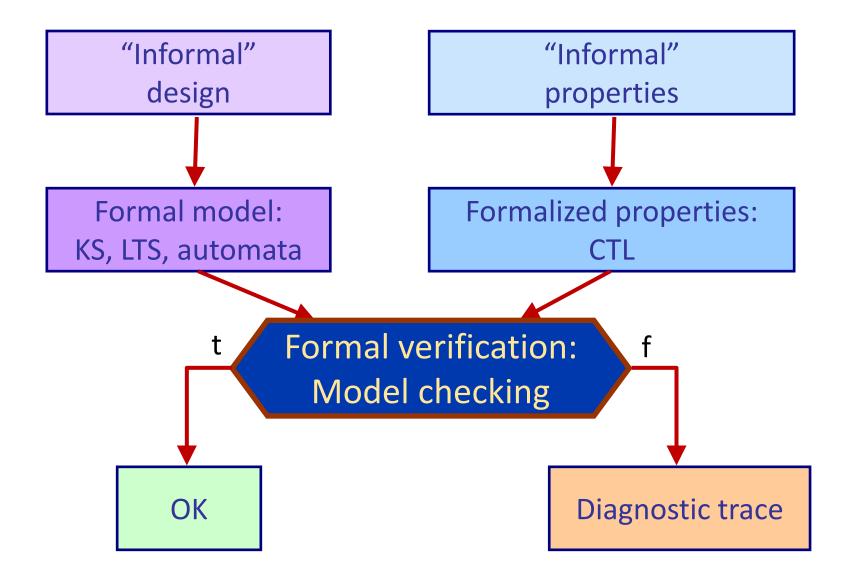
Bounded model checking

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Formal verification of CTL properties



Recap: Techniques for handling large state space

CTL model checking: Symbolic technique

Set enumeration technique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations on sets of states	Efficient operations on ROBDDs

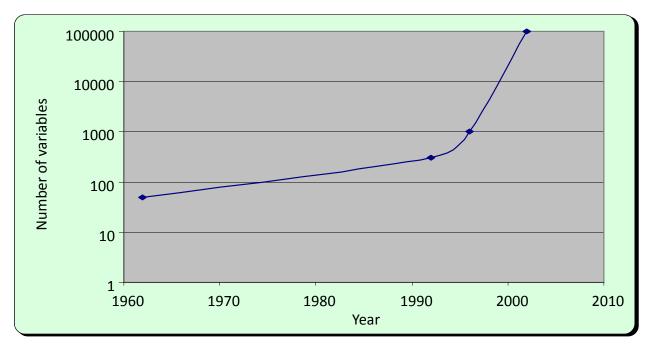
- Model checking of invariants: Bounded model checking
 - Model checking to a given depth:
 Searching for counterexamples with bounded length
 - A detected counterexample is always valid
 - Non-existing counterexample does not imply correctness
 - Background: Searching satisfying valuations for Boolean formulas with SAT/SMT techniques

The basic idea of bounded model checking

- We do not handle the state space "all in one"
- We perform checking by restricting the length of paths from the initial state
 - Partial verification: checking only up to a given bound in path length
 - The bound can be iteratively increased
 - In certain cases, the state space has a "diameter": the length of the longest loop-free path
 - Increasing the bound to this length will result in complete checking

To be used: SAT solvers

- SAT solver:
 - Given a Boolean formula (Boolean function), it searches for a model,
 i.e., a variable assignment (substitution) that makes the formula true
 - Example: for formula $f(x_1, x_2, x_3) = x_1 \land x_2 \land \neg x_3$ substitution is $(x_1, x_2, x_3) = (1, 1, 0)$
- Hard problem, but efficient algorithms exist
 - o zChaff, MiniSAT, ...



Approach and goals

- Mapping the bounded model checking problem (model + property) to a Boolean formula to be satisfied (by a SAT solver)
 - Model: Paths of bounded length are mapped to Boolean formula on the basis of the characteristic functions
 - Initial state
 - State transition relation to reach next states (along the path)
 - Property: Typically invariant properties mapped to Boolean formula as a characteristic function belonging to the property
 - Not limited to reachable states, but for all possible states
- The Boolean formula belonging to the model checking problem will be constructed in the following way:
 - If the SAT solver finds a substitution for the formula, then the substitution induces a counterexample for the property
 - If the SAT solver finds no substitution for the formula, then the property holds

Informal introduction

- How do we describe a path of bounded length?
 - Starting from the initial states: characteristic function I(s)
 - "Stepping forward" along potential transitions $s^0 → s^1 → s^2 → s^3 → ...$
 - Characteristic function of the transition relation: $C_R(s, s')$ with variables for s, s'
 - Step between s^0 and s^1 : characteristic function $C_R(s^0, s^1)$ with separate variables for s^0, s^1
 - Second step: $C_R(s^1, s^2)$ with separate variables for s^1, s^2
 - i-th step: C_R(sⁱ, sⁱ⁺¹) with separate variables for sⁱ⁻¹, sⁱ
- How do we describe the property?
 - Invariant (states with a given local property): characteristic function p(s)
- The characterization of a counterexample (with conjunction):
 - Starting from the initial state: I(s)
 - "Stepping forward" n steps along the transition relation: C_R(sⁱ, sⁱ⁺¹)
 - To get a counterexample (somewhere $p(s^i)$ fails): $\neg p(s^i)$ disjunction on states of the path

A substitution for this formula corresponds to a counterexample:

$$\stackrel{I}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\mathcal{C}_{R}}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\mathcal{C}_{R}}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\wedge}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{}} \stackrel{\vee}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{} } \stackrel{\rho}{\xrightarrow{}} \stackrel{\rho}{\xrightarrow{}$$

Notations

- Kripke structure M=(S,R,L)
- Logical formulas:

I(s): the characteristic formula of initial states with n variables

• Background: Encoding states with a bit vector of length n

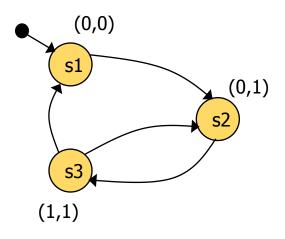
 \circ C_R(sⁱ,sⁱ⁺¹): the characteristic formula of transitions in 2n variables

- Disjunction of the characteristic function of individual transitions
- path(): characteristic function of paths of length k with (k+1)*n variables

path(
$$s^0, s^1, ..., s^k$$
) = $\bigwedge_{0 \le i < k} C_R(s^i, s^{i+1})$

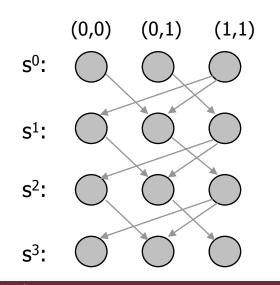
- o p(s): characteristic function of the property
 - Based on the labeling of states with local property
 - In general: it can be constructed based on the state variables

Example: Encoding a model



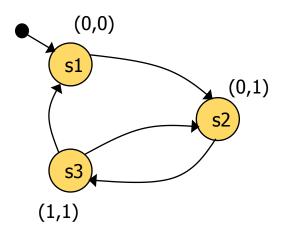
Initial state: I(x,y) = (¬x∧¬y)

Transition relation: $C_{R}(x,y, x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \gamma')$



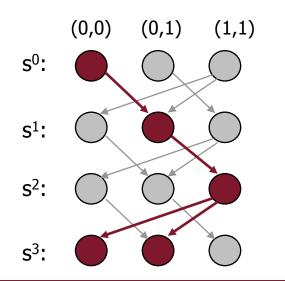
Paths with 3 steps (from any state): $path(s^{0},s^{1},s^{2},s^{3}) =$ $C_{R}(x^{0},y^{0},x^{1},y^{1}) \land$ $C_{R}(x^{1},y^{1},x^{2},y^{2}) \land$ $C_{R}(x^{2},y^{2},x^{3},y^{3})$

Example: Encoding a model



Initial state: I(x,y) = (¬x∧¬y)

Transition relation: $C_{R}(x,y, x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \neg y')$



Paths with 3 steps from the initial state: $I(x^{0},y^{0}) \land path(s^{0},s^{1},s^{2},s^{3}) =$ $= I(x^{0},y^{0}) \land$ $C_{R}(x^{0},y^{0},x^{1},y^{1}) \land$ $C_{R}(x^{1},y^{1},x^{2},y^{2}) \land$ $C_{R}(x^{2},y^{2},x^{3},y^{3})$

Formalizing the problem

Invariant to prove: Each path from the initial states ends in a state where p(s) holds

 $\forall i: \forall s^0, s^1, \dots, s^i: (I(s^0) \land path(s^0, s^1, \dots, s^i) \Rightarrow p(s^i))$

 Counterexample: If p(s) fails at some point then there exists an index i such that the following formula is satisfiable (a substitution exists):

$$I(s^{\circ}) \wedge path(s^{\circ}, s^{1}, ..., s^{i}) \wedge \neg p(s^{i})$$

The substitution can be found by the SAT solver

- \circ That is, values for the (i+1)*n variables that define the path (s⁰,s¹,...,sⁱ)
- First idea: for i=0,1,2,..., check whether for paths of length i the following formula can hold:

$$I(s^{\circ}) \wedge path(s^{\circ}, s^{1}, ..., s^{i}) \wedge \neg p(s^{i})$$

Elements of the algorithm

- Iteration: i=0,1,2,... on the length of paths
- We are investigating loop-free paths: lfpath

lfpath($s^0, s^1, ..., s^k$) = path($s^0, s^1, ..., s^k$) \land

Can be expressed in terms of the state variables

 $\wedge \quad s^i \neq s^j$

 $0 \le i < j \le k$

- Termination condition during the iteration:
 - There is no loop-free path with length i from the initial state, that is, the following is not satisfiable:

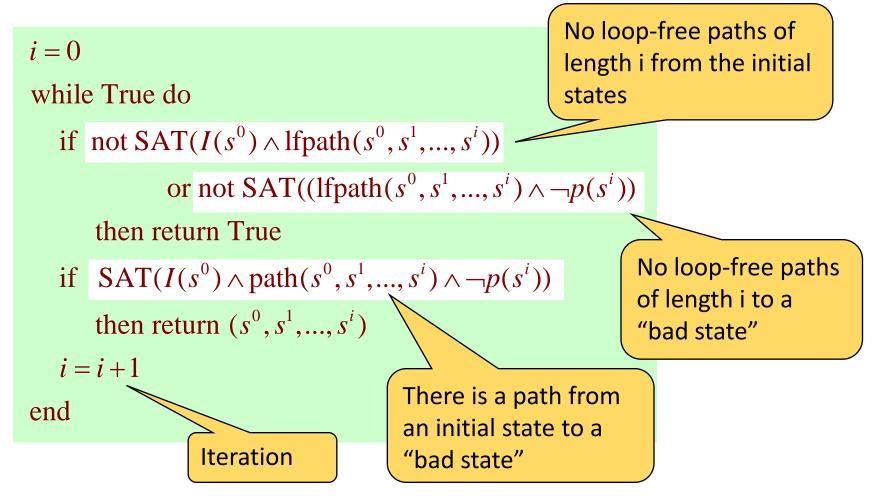
 $I(s^{\circ}) \wedge \operatorname{lfpath}(s^{\circ}, s^{1}, ..., s^{i})$

• There is no loop-free path with length i to a "bad state" (where p(s) does not hold), that is, the following is not satisfiable:

lfpath
$$(s^0, s^1, ..., s^i) \land \neg p(s^i)$$

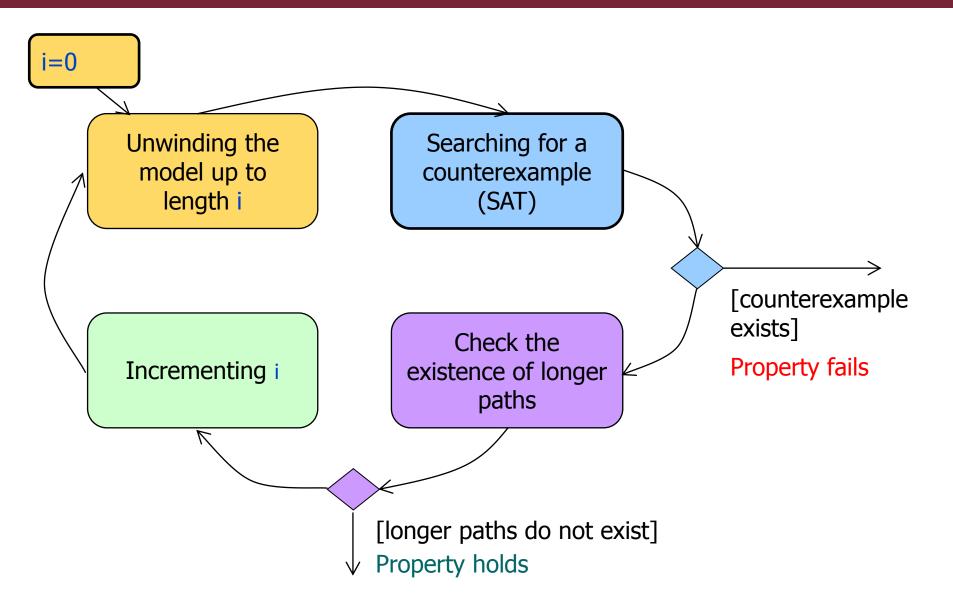
If the iteration stops, then p(s) holds invariably

The algorithm



- If the result is True: the invariant holds
- If the result is a substitution of the n*(i+1) variables inducing a path (s⁰,s¹,...,sⁱ): it is a counterexample for the property p(s)

Bounded model checking with iteration



Refining the algorithm

- We do not start iterating from 0
 - Start with a given k, and try to generate the counterexample first
 - if such a counterexample exists, it is found quickly (without iterations)
 - If not: examine whether for k+1 the iteration terminates, and then increase k
 - o It is not guaranteed that the length of the counterexample is minimal
 - > Heuristics needed for estimating k if we aim to find a short counterexample
- Further restrictions on paths (encoded in the path formula):
 - On paths, no initial states are traversed after the first one
 - Not necessarily a loop there might be many initial states
 - Similarly: No bad states are traversed before the last state of the path
 - Only the shortest path is considered between two states
 - Longer paths between the same pair of states are excluded
 - All initial states (if there are many) are considered "at once"
 - Those paths are avoided on which the end state can be reached by a shorter path from another initial state
 - Similarly for the bad states

Summary: BMC

- Efficient for checking invariant properties
- Sound method using loop-free paths
 - If there is a counterexample up to a certain bound, it will be found
 - A counterexample found is a valid counterexample
- Handling the state space
 - SAT solver: symbolic technique using Boolean formulas
 - For up to a given length of paths only a partial result is obtained
- Finding the shortest counterexample is possible
 - Useful for generating test sequences
- Automatic method
- Tool examples:
 - Symbolic Analysis Laboratory (SAL): sal-bmc
 - SAL sal-atg: used for automated test generation
 - CBMC: bounded model checker for C source code

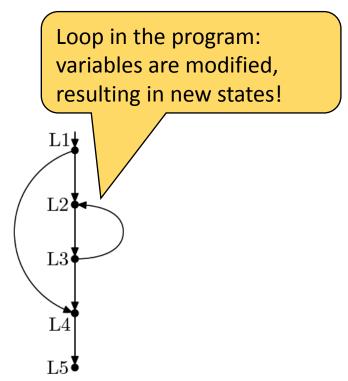
Outlook: The results of Intel (hardware models)

Model	k	Forecast (BDD)	Thunder (SAT)
Circuit 1	5	114	2.4
Circuit 2	7	2	0.8
Circuit 3	7	106	2
Circuit 4	11	6189	1.9
Circuit 5	11	4196	10
Circuit 6	10	2354	5.5
Circuit 7	20	2795	236
Circuit 8	28		45.6
Circuit 9	28		39.9
Circuit 10	8	2487	5
Circuit 11	8	2940	5
Circuit 12	10	5524	378
Circuit 13	37		195.1
Circuit 14	41		
Circuit 15	12		1070

Bounded model checking based on software source code

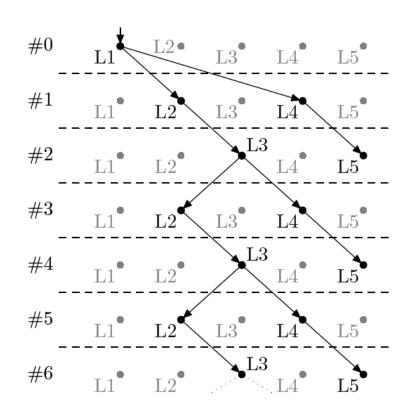
Use for software: the problem of loops

Control flow graph (CFG):



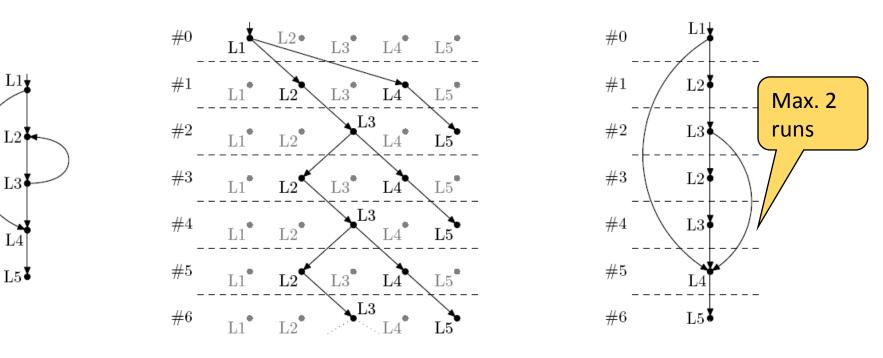
Traversing cycles might lead to new states

Path enumeration:



Handling the loops

- Possibilities for handling the loops:
 - o Path enumeration:
 - Systematically along all possible paths in execution cycles
 - Loop unrolling:
 - Unrolling loops in a limited number of runs



Software model checking tools

• F-SOFT (NEC):

- Path enumeration
- Used for checking Unix system utilities (e.g. pppd)

CBMC (CMU, Oxford University):

- Supports C, SystemC
- Loop unrolling
- Support for certain system libraries in Linux, Windows, MacOS
- Handling integer arithmetic:
 - Bit level ("bit-flattening", "bit-blasting")
- CBMC with SMT solving
 - Satisfiability Modulo Theories (SMT): SAT solving extended with first order theories, e.g. integer arithmetic

SATURN:

- Loop unrolling: at most 2 runs
- Full Linux kernel was verifiable for Null pointer dereferences

Supplementary material: k-induction

The basic idea of k-induction

- Introduction: Let P_i be a series of properties
 - Traditional mathematical induction:

$$P_0 \wedge \forall i : (P_i \Rightarrow P_{i+1}) \Rightarrow \forall n : P_n$$

o k-induction:

$$\bigwedge_{j=0}^{k-1} P_j \wedge \forall i : \left(\left(\bigwedge_{j=0}^{k-1} P_{i+j} \right) \Rightarrow P_{i+k} \right) \Rightarrow \forall n : P_n$$

Idea: Application on state space to check invariants

- Base case: The invariant holds on paths of length k from the initial state (this can be checked by bounded model checking)
- Inductive step: If the invariant holds on paths of length k from any state, then it holds for the next states that follow the end states of each path (i.e., on paths of length k+1)
 - Single state transition from any state may not keep the property
 - But k successive transitions may keep the property to k+1

k-induction on the state space

- Formula: $\bigwedge_{j=0}^{k-1} P_j \wedge \forall i : \left(\left(\bigwedge_{j=0}^{k-1} P_{i+j} \right) \Rightarrow P_{i+k} \right) \Rightarrow \forall n : P_n$
- Its base case: $\bigwedge_{j=0}^{k-1} P_j$ Corresponds to:

 $\forall s^0, s^1, \dots, s^{k-1} : \left(I(s^0) \land path(s^0, s^1, \dots, s^{k-1}) \right) \Longrightarrow \left(\forall 0 \le j < k-1 : P(s^j) \right)$

• Inductive step: $\forall i : \left(\left(\bigwedge_{j=0}^{k-1} P_{i+j} \right) \Rightarrow P_{i+k} \right)$ Corresponds to:

$$\forall i : \forall s^i, s^{i+1}, \dots, s^{i+k} : \left(path(s^i, s^{i+1}, \dots, s^{i+k}) \land \bigwedge_{j=i}^{i+k-1} P(s^i) \right) \Longrightarrow P(s^{i+k})$$

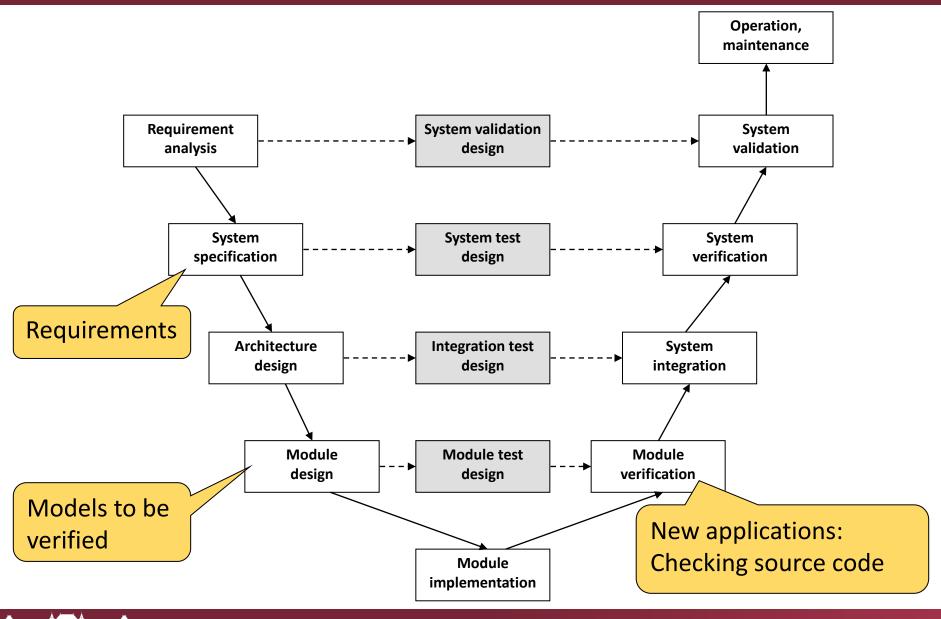
Using k-induction

- Cases for evaluating the invariant property:
 - If the base case (bounded model checking) provides a counterexample: The invariant does not hold
 - If there is no counterexample in the base case and no counterexample in the inductive step: The invariant holds
 - Otherwise: It is not known whether the invariant holds
 - A counterexample resulting from the inductive step may not hold (considering the given initial state of the model)
- Further steps if there is no decisive result:
 - Increasing the length of the induction
 - In case of longer paths decisive result may arise
 - Strengthening the invariant: P' is checked instead of P, where P' => P
 - Adding and extra invariant (additional knowledge)
 - If there is another invariant L then it restricts the paths considered:

$$\bigwedge_{j=0}^{k-1} P_j \wedge \forall i : \left(\left(\bigwedge_{j=0}^{k-1} (P_{i+j} \wedge L_{i+j}) \right) \Rightarrow P_{i+k} \right) \Rightarrow \forall n : P_n$$

Summary: Properties of model checking

Model checking during the design



Efficient techniques for model checking

- Symbolic model checking
 - Characteristic formulas represented as ROBDD
 - Efficient for "well structured" problems
 - E.g. identical processes in a protocol
 - Size depends on variable ordering
- Bounded model checking for invariant properties
 - Based on satisfiability solving (SAT solver)
 - Searching for counterexamples of bounded length
 - A counterexample found is a valid counterexample
 - If no counterexample found, it is only a partial result (longer counterexamples might exist)
 - Good for test generation

Strengths of model checking

- It is possible to handle large state spaces
 - \circ State spaces of size 10²⁰, but examples even for size 10¹⁰⁰
 - This is the state space of the system (e.g. network of automata)
 - Efficient techniques: symbolic, SAT based (bounded)
- General method
 - Software, hardware, protocols, ...
- Fully automatic tool, no intuition or strong mathematical background is needed
 - Theorem proving is much difficult to apply
- Generates a counterexample that can be used for debugging

Turing Award in 2007 for establishing model checking: E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

Weaknesses of model checking

Scalability

- Uses explicit state space traversal
- Efficient techniques exist, but good scalability can not be guaranteed
- Mainly for control driven applications
 - Complex data structures induce a large state space
- Hard to generalize the results
 - If the protocol is correct for 2 processes, is it correct for N processes?
- Formalizing requirements is hard
 - "Dialects" in temporal logic for different domains
 - IEEE standard: PSL (Property Specification Language)