
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification of the source code

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Where are we now in the development process?

2

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

• Checking completeness, consistency, feasibility, verifiability
• Assuring traceability

• Trade-off analysis, interface analysis, fault effects analysis
• Model based quantitative evaluation

• Formal verification by (temporal logic based) model checking
• Equivalence checking

• Source code analysis
• …

Inputs and outputs of the phase

Software component
(module) coding

Software component
source code

Software source code
verification report

Software requirements
specification

Software architecture
design

Software component
design

“Local” static checking:
• Source code is free of bugs

(functionally correct)
• Implements its specification
• Good quality (understandable,

maintainable, reusable)

Software quality
assurance plan

3

Overview: What is checked?

 Checking coding guidelines

o Domain / platform / company specific rules

o Well-known coding standards (guidelines)

 Checking software metrics

o Estimation of quality aspects (e.g., maintainability)

o Based on the relation of metrics and fault-proneness

 Checking typical fault patterns by static analysis

o Extensible tools

 Checking runtime failures by code interpretation

o Static verification of dynamic properties

4

Checking coding guidelines

5

Coding guidelines: Introduction

 Set of rules giving recommendations on

o Style: formatting, naming, structure, …

o Programming practice: proven constructs, architecture, …

o Forbidden practice: error-prone constructs, …

 Main categories of guidelines

o Industry/domain specific

• MISRA (automotive), SoHaR (nuclear industry), …

o Platform specific

• MS Framework Design Guidelines (.NET, C#), …

o Organization specific

• Google Java Style Guide, CERN ROOT Coding Conventions,
NASA JPL Coding Standard, …

6

Coding guidelines: Standards in critical systems

 Programming style
o Code formatting, comments, source code complexity metrics

 Restricted or forbidden constructs (hard to review)
o Recursion, pointers, automatic type conversion, unconditional

branch, …

o OO constructs: Polymorphism, multiple inheritance, runtime
construction and destruction of objects

 Programming languages (e.g., in EN50128):
o Analyzable, strongly typed, structured or OO language

o SIL1-SIL4 HR: Ada, Modula-2, Pascal

o SIL1-SIL4 NR: BASIC; SIL3-SIL4 NR: unconstrained C/C++

o SIL3-SIL4 R: C and C++ with coding rules (language subset)

 Tools (compilers, linkers, libraries):
o Certified, validated or proven-in-use

7

Example: Part of SoHaR guidelines (nuclear industry)

Group Number Guideline

 1 Reliability

 1.1 Predictability of Memory Utilization

Specific 1.1.1 Minimizing Dynamic Memory Allocation

Outside 1.1.2 Minimizing Memory Paging and Swapping

 1.2 Predictability of Control Flow

Specific 1.2.1 Maximizing Structure

Specific 1.2.2 Minimizing Control Flow Complexity

Specific 1.2.3 Initialization of Variables before Use

Specific 1.2.4 Single Entry and Exit Points in Subprograms

Specific 1.2.5 Minimizing Interface Ambiguities

Specific 1.2.6 Use of Data Typing

General 1.2.7 Precision and Accuracy

Specific 1.2.8 Use of Parentheses rather than Default Order of Precedence

Specific 1.2.9 Separating Assignment from Evaluation

Outside 1.2.10 Proper Handling of Program Instrumentation

General 1.2.11 Control of Class Library Size

General 1.2.12 Minimizing Dynamic Binding

General 1.2.13 Control of Operator Overloading

 1.3 Predictability of Timing

Outside 1.3.1 Minimizing the Use of Tasking

Outside 1.3.2 Minimizing the Use of Interrupt Driven Processing

8

Example: C and C++ coding guidelines (rule sets)

 MISRA C (Motor Industry Software Reliability Association)
o MISRA C 2004: 142 rules (122 mandatory)
 Examples:

• Rule 33 (Required): The right hand side of a "&&" or "||" operator
shall not contain side effects.

• Rule 49 (Advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.

• Rule 59 (R): The statement forming the body of an "if", "else if",
"else", "while", "do ... while", or "for" statement shall always be
enclosed in braces.

o MISRA C 2012: 143 rules + 16 directives
• Rules: For static checking of the source code
• Directives: Related to process, design documents

 MISRA C++ 2008: 228 rules
 US DoD JSF C++: 221 rules (including code metrics)

 „Joint Strike Fighter Air Vehicle C++ Coding Standard”

9

Example: MISRA coding rules

 Loop counters shall not be modified in the body of
‘for’ loops:

 Forbidden elements: goto, continue

 Bit manipulation (>>, <<, ~, &, ^) shall not be
executed on signed or float types

10

Example: Checking MISRA compliance

 Tools for checking MISRA compliance
o LDRA, IAR Embedded Workbench, QA-C, SonarQube, Coverity, …

11

Example: Compiler-dependent implementation

 Results of integer division depending on compiler implementation:

o (-5/3) may be -1 and the remainder is -2, or

o (-5/3) may be -2 and the remainder is +1

 Out-of-range results when adding or multiplying integers:

o If the addition is implemented using unsigned short (16 bits) corresponding

to the types of the operands then overflow may occur

o If the addition is implemented using unsigned int (32 bits) corresponding to

the type of the result then there is no overflow

 These compiler-dependent implementations have to be validated

(tested) before using the compiler

12

Checking software metrics

13

Software source code metrics

 Goals of using source code metrics
o Get measurable characteristics of the source code

o To be linked with the quality of the source code

o To estimate the cost of review, testing, maintenance

 Quality aspects for source code (e.g., in MISRA):
o Complexity

o Maintainability

o Modularity

o Reliability

o Structuredness

o Testability

o Understandability

o Maturity

14

Example: MISRA SW attributes and related metrics

Cyclomatic Number:
„Number of basic paths
through the component
which can generate every
possible path of a
component.”

Essential Cyclomatic
Complexity:
„Computed by reducing
the control flow graph by
systematically (from the
inner parts) replacing
structured code blocks
with a single node”

15

Example: Limits for MISRA metrics

Average number of

operators and

operands in

statements

CSC = Cyclomatic

Number *

(Fan-In * Fan-Out)2

Average number of

components at call

levels in the function

call tree

16

Structured control

flow graph: ESC=1

Categories of OO metrics

 Size: Counting source code elements
o Number of code lines, attributes, methods (private/public/protected)

 Complexity: Cyclomatic numbers
o CK: Max. number of independent paths in the control flow graph

o Sum of cyclomatic complexities of methods

 Coupling: How many elements of other classes are used
o Number of (directly) called methods

o Number of classes with called method or used attribute

 Inheritance: Based on the inheritance graph
o Number of levels below / above a given class, directly / all

o Number of inherited methods

 Cohesion: Links among the methods and attributes of a class
o Number of methods sharing (using together) an attribute

o Number of methods calling each other

17

Correlation of OO metrics and fault-proneness (1)

 Goal: Prediction of the fault-proneness of classes
o To support focusing the testing activities on risky classes

 Experiments: Measuring correlation of metrics and number of bugs
detected in a class during testing
o Open source projects were examined (Mozilla, 4500 classes)

o Bugs recorded in bug databases were analyzed (Bugzilla, 230 000 bugs)

Inefficient metrics for fault-proneness prediction:

 Inheritance category
o NOA: Number of Ancestors

o NOC: Number of Children

 Cohesion category
o LCOM: Lack of Cohesion in Methods: Number of method pairs that do not

share attribute minus the number of methods that share

18

Correlation of OO metrics and fault-proneness (2)

Efficient metrics for fault-proneness prediction:

 Coupling category:

o CBO (Coupling Between Objects): Number of classes coupled with the
examined class (calling their methods, using attributes, or inherit)

o NOI (Number of Outgoing Invocations): Number of directly called
methods

o RFC (Response Set of a Class): Number of methods of the class +
directly called other methods

o NFMA (Number of Foreign Methods Accessed): Number of foreign
methods (not owned and not inherited) that are directly called

 Size category:

o NML (Number of Methods Local): Number of local methods of a class

o LLOC (Logical Lines of Code): Number of lines that are not empty and
not comment only

19

Checking fault patterns by static analysis

Pattern based tools

20

Overview: Types of static analysis tools

 Early tools: syntactic „well-formedness” checking
o Examples: Lint (for C, from 1979, Bell Labs), JLint (for Java)

 Static analysis tools looking for fault patterns
o Built-in fault patterns (bad practice) + extensible by new patterns

o Checking is not safe (false errors may occur)

o Examples: FindBugs - SpotBugs (Java), SonarQube (Java, C, C++),
ErrorProne (Java), PMD + Codacy (Java), Gendarme (.Net CIL), …

 Static analysis tools using abstract code interpretation
o Computing the ranges of variables in program statements

o Detecting arithmetic overflow, underflow, out-of-bound indexing etc.

o Examples: CodeSurfer, CodeSonar (C/C++, template based), Infer
(Java, Facebook), Prevent (MS Win API, supporting PThreads),
Klocworks

21

Example: Fault categories and patterns in FindBugs

 Bad practice
o Random object created and used only once

 Correctness
o Bitwise add of signed byte value

 Malicious code vulnerability
o May expose internal static state by storing a mutable object into a static field

 Multithreaded correctness
o Synchronization on Boolean could lead to deadlock

 Performance
o Method invokes toString() method on a String

 Security
o Hardcoded constant database password

 Dodgy
o Useless assignment in return statement

22

Example: Bug found by static checking (1)

JLint:
 Verification completed: 0 reported messages.
FindBugs:
 The parameter s1 to Main.chk(boolean, boolean) is dead upon entry but

overwritten
 Dead store to s1 in Main.chk(boolean, boolean)
PMD:
 No problems found

public class Main {

 public static void chk(boolean s1, boolean s2){

 if(s1 = s2) {System.out.println("foo");}

 else {System.out.println("bar");}}

 public static void main(String[] args) {

 boolean b1 = false;

 boolean b2 = true;

 Main.chk(b1, b2);}}

'=‘ instead of '=='

23

Example: Bug found by static checking (2)

JLint:

 java\lang\String.java:1: equals() was overridden but not hashCode().

 Verification completed: 1 reported messages.

FindBugs:

 Main.main(String[]) ignores return value of String.replace(char, char)

PMD:

 An operation on an Immutable object (String, BigDecimal or BigInteger)
won't change the object itself

public static void main(String[] args) {

 String b = "bob";

 b.replace('b', 'p');

 if(b.equals("pop")){

 System.out.println("Equals");

 }

}

The function String.replace() (called as
a member function of an instance)
does not alter the concrete instance,
but returns the modified string as its
return value

24

Example: Extension of PMD rules

class Example {

 void bar() {

 while (baz)

 buz.doSomething();

 }

}

public class WhileLoopsMustUseBracesRule extends AbstractRule {

 public Object visit(ASTWhileStatement node, Object data) {

 SimpleNode firstStmt = (SimpleNode)node.jjtGetChild(1);

 if (!hasBlockAsFirstChild(firstStmt)) {

 addViolation(data, node);

 }

 return super.visit(node,data);

 }

 private boolean hasBlockAsFirstChild(SimpleNode node) {

 return (node.jjtGetNumChildren() != 0 && (node.jjtGetChild(0)
instanceof ASTBlock));

 }

}

We would like to detect when
there are no curly braces around
the body statement of a “while”
loop

The
checker
rule
(in Java)

• Abstract Syntax Tree (AST) based representation of the source code
• Rule to be checked at a given place of the AST

25

How to use static analysis tools

 Integrate to build process
o Perform check before/after each commit, generate reports

o Use from the start of a project: Too many problems found

at a later phase would discourage developers

 Configure the tools
o Filter based on severity or category of rules

o Add custom rules

 Review the results
o False positive: No errors found does not mean correct

software

o False negative: An error found may not cause a real failure

o Ignore rule / one occurrence, with explanation

26

Checking runtime failures
by code interpretation

27

Dynamic properties to be checked

 Goal: Detection of runtime failures without executing the
software

 Failures to be detected include

o Null pointer

o Array index out-of-bound

o Uninitialized data

o Access conflict on shared variable

o Arithmetic error: division by zero, overflow, underflow

o Dangerous type conversion

o Dead code (unreachable)

 Performed by control flow and data flow analysis

o Calculate values or interval (range) for each variable

o Propagate values of intervals based on control flow

28

Example: Detecting a runtime error by static analysis

20: int ar[10];

21: int i,j;

22: for (i=0; i<10; i++)

23: {

24: for (j=0; j<10; j++)

25: {

26: ar[i-j] = i+j;

27: }

28: }

Error: Out-of-bound array access in line 26

30

Example: The Infer tool

 Static analysis tool by Facebook

o Focus on mobile code development

o Users: Facebook, Instagram, Oculus, Spotify, WhatsApp, …

 Android and Java

o Null pointers, resource leaks

 iOS and Objective-C

o Null pointers, memory leaks, resource leaks

31

Example: QA-C, QA-C++ tools

„A combination of
SMT solver and
in-house
language and
parsing expertise
result in
exceptionally
accurate dataflow
and semantic
modeling of C and
C++ code
– a foundation for
a set of unique
analysis checks.”

32

How does code interpretation work?

Source code to be examined:

0: k=ioread32();

1: i=2;

2: j=k+5;

3: while (i<10) {

4: i=i+1;

5: j=j+3;

6: }

7:

8: k = k/(i-j);

33

Risk: Division by 0.
Is it possible?
What is the input (for variable k)
resulting in division by 0?

Phase 1: Collecting local information about the values of variables

 X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}

 X2={(i,k+5,k) | (i,j,k)X1}

 X3= X2 X6

 X4={(i+1,j,k) | (i,j,k)X3, i<10}

 X5={(i,j+3,k) | (i,j,k)X4}

 X6= X5

 X7={(i,j,k) | (i,j,k)X3, i=10}

 X8={(i,j,k/(i-j)) | (i,j,k)X7, i-j≠0}

This statement can be
reached from two places

Inside of the loop

Based on the previous
step

Exit from the loop

What are the potential
values of (i,j,k)

34

35

Phase 2: Propagating the ranges (1)

 X0={(0,0,k) | k[-231,231-1]}

 X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}

 X1={(2,0,k) | k[-231, 231-1]}

 X2={(i,k+5,k) | (i,j,k)X1}

 X2={(2,k+5,k) | k[-231, 231-1]}

 X3= X2 X6

 X3={(i,j,k) | k[-231, 231-1], i[2,10], j=k+3i-1}

 X4={(i+1,j,k) | (i,j,k)X3, i<10}

 X4={(i,j,k) | k[-231, 231-1], i[3,10), j=k+3i-4}

Assignment before the
loop, and condition to be in
the loop

i increased; j was not assigned its new value thus 3 is subtracted

Resolving references by
propagating information
from X0

Loop invariant:
j=k+5+3(i-2)

Ranges calculated using
the information collected
in the previous phase

Phase 2: Propagating the ranges (2)

 X5={(i,j+3,k) | (i,j,k)X4}

 X5={(i,j,k) | k[-231, 231-1], i[3,10), j=k+3i-1}

 X6= X5

 X6=X5

 X7={(i,j,k) | (i,j,k)X3, i=10}

 X7={(i,j,k) | i=10, k[-231, 231-1], j=k+29}

 X8={(i,j,k/(i-j)) | (i,j,k)X7}

 X8={(i,j,k/(i-j)) | i=10, k[-231, 231-1], j=k+29}

Error, if i-j=0, in this case since i=j=10, k=j-29=-19

 X8error={(10,10,-19)}

j=k+5+3(i-2),
and here i=10

36

Analyzing dynamic properties

 Based on analyzing control flow and data flow

o Operations with intervals (ranges) and constraints

o Loops: determine loop invariants

 Calculating loop invariants

o Hard problem (not decidable in general)

o Approximations or user specifications are required

 Abstraction: over-approximating the intervals

o All errors are detected

o False negatives (errors) are possible

• Can be treated as a hint for further analysis or testing

37

Illustration of abstraction

 Problem: Division by (x-y); is x==y possible?

Possible values of x
and y precisely
(without abstraction)

Rough abstraction
by intervals: many
false positives

Better abstraction
(regions): 4 cases
shall be checked

38

Example: Color-coded output of the PolySpace tool

39

Tools supporting code interpretation

 Abstract interpretation of code:

o PolySpace C/Ada
• Ariane 5 (70k lines of code), Flight Management System (500k lines of code)

o Astrée
• Airbus flight control software

o C Global Surveyor
• NASA Mars PathFinder, Deep Space One

 Annotation based tools (design by contract):
Loop invariants, pre- and post-conditions are given manually
o ESC/Java (based on JML):

Also annotation based synthesis of monitor components, test oracle

• E.g., jmlc+jmlrac, jmlunit

o Microsoft PreFix, PreFast, Boogie (Spec#, BoogiePL):
Verification conditions (theorems to be proved) are generated and given to
an external theorem-prover

40

Example: Proving partial correctness by Viper

Specific intermediate language to specify program properties

41

Example: Proving partial correctness by Viper

Specific intermediate language to specify program properties

42

Sum of the integers
from 0 to n

Preconditions and
postconditions

Invariants

Summary: Techniques for source code analysis

 Manual review on the basis of checklists
o Coding guidelines (e.g., naming conventions)

o Typical mistakes (error guessing)

o Analysis of the structure

• Control flow checking: complexity, clear structure

• Data flow analysis: looking for limits and boundary values

 Static analysis tools
o Checking coding standards (built-in rules)

o Checking the limits of source code metrics

o Looking for fault patterns: Syntactic and possibly semantic faults

 Dynamic analysis tools
o Checking potential runtime faults by code interpretation

o Calculate and propagate the interval for each variable

o Performance problems may also be detected

43

