Proof of program correctness

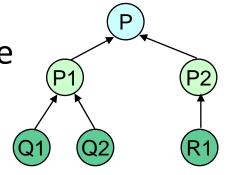
Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Proof of correctness for structured programs

Proving correctness for structured programs

- "Composition" of properties:
 - If a program P consists of syntactic units
 P₁ and P₂ then the properties of P can be derived on the basis of the properties of the syntactic units P₁ and P₂



- The principle of structural induction
- Structured programs: PLW language

P::= x:=e | skip | P_1 ; P_2 | if B then P_1 else P_2 fi | while B do P od

Example (positive integer division):

 P_{div} : r:=x; q:=0; while r \geq y do r:=r-y; q:=q+1 od

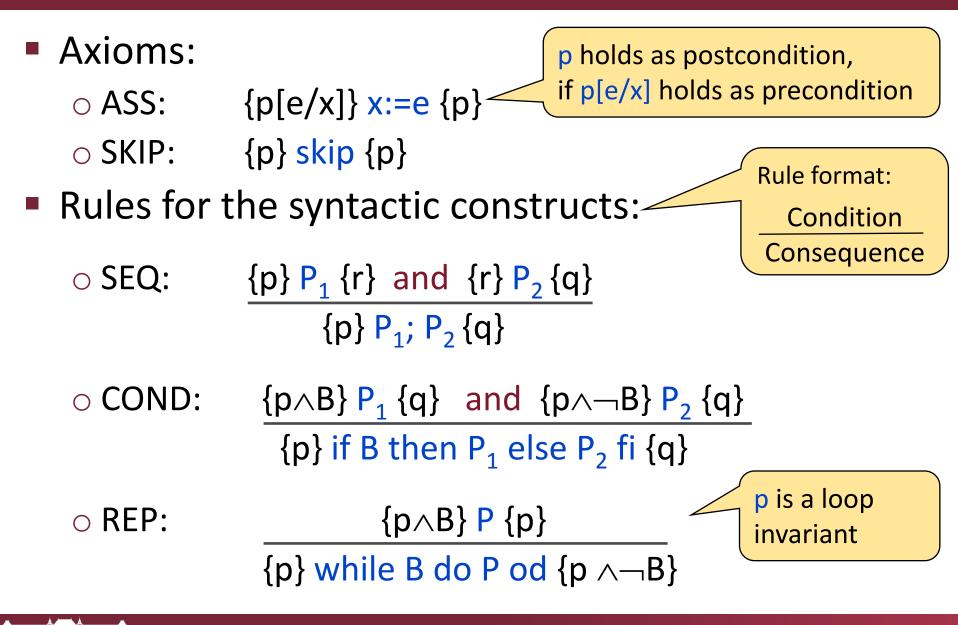
Operational semantics of PLW

• Configuration: $C_i = (P_i, \sigma_i)$ where $\circ P_i$ is the syntactic continuation (E denotes empty cont.) $\circ \sigma_i$ is the observable state (variables) Here $E;P \equiv P$ is applied at • Transition relation: $C \rightarrow C'$ the end \circ (x:=e, σ) \rightarrow (E, σ [e/x]) \circ (skip, σ) \rightarrow (E, σ) \circ (P₁; P₂, σ) \rightarrow (P₁'; P₂, σ ') if (P₁, σ) \rightarrow (P₁', σ ') \circ (if B then P₁ else P₂ fi, σ) \rightarrow (P₁, σ) if σ [B]=true \rightarrow (P₂, σ) if σ [B]=false \circ (while B do P od, σ) \rightarrow (P; while B do P od, σ) if σ [B]=true

if $\sigma[B]$ =false

 \rightarrow (E, σ)

D deduction system for proving partial correctness (1)



D deduction system for proving partial correctness (2) Strengthening General rules: precondition and weakening postcondition $p \Rightarrow p_1$ and $\{p_1\} P \{q_1\}$ and $q_1 \Rightarrow q_1$ • CONS: {p} **P** {q} Separated proof ${p} P {q_1} and {p} P {q_2}$ • AND: of conjunctive postcondition ${p} P {q_1 \land q_2}$ ${p_1} P {q} and {p_2} P {q}$ \circ OR: Separating cases ${p_1 \lor p_2} P {q}$ of disjunctive precondition

Domain axioms and rules:
 To be included in the deduction system

Example: Proving partial correctness

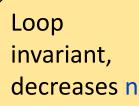
{ $x \ge 0 \land y \ge 0$ } r:=x; q:=0; while r $\ge y$ do r:=r-y; q:=q+1 od { $x=q \cdot y+r \land 0 \le r < y$ }

1.
$$\{x = 0 \cdot y + x \land x \ge 0\} q := 0 \{x = q \cdot y + x \land x \ge 0\}$$
 (ASS)
2. $\{x = q \cdot y + x \land x \ge 0\} r := x \{x = q \cdot y + r \land r \ge 0\}$ (ASS)
3. $\{x = 0 \cdot y + x \land x \ge 0\} q := 0; r := x \{x = q \cdot y + r \land r \ge 0\}$ (1)(2)(SEQ)
4. $x \ge 0 \land y \ge 0 \Rightarrow x = 0 \cdot y + x \land x \ge 0$ (ARITHMETIC)
5. $\{x \ge 0 \land y \ge 0\} q := 0; r := x \{x = q \cdot y + r \land r \ge 0\}$ (3)(4)(CONS)
6. $\{x = (q + 1) \cdot y + r - y \land r - y \ge 0\} r := r - y \{x = (q + 1) \cdot y + r \land r \ge 0\}$ (ASS)
7. $\{x = (q + 1) \cdot y + r \land r \ge 0\} q := q + 1 \{x = q \cdot y + r \land r \ge 0\}$ (ASS)
8. $\{x = (q + 1) \cdot y + r - y \land r - y \ge 0\} r := r - y; q := q + 1 \{x = q \cdot y + r \land r \ge 0\}$
(6)(7)(SEQ)
9. $x := q \cdot y + r \land r \ge 0 \land r \ge y \Rightarrow x = (q + 1) \cdot y + r - y \land r - y \ge 0$ (ARITHMETIC)
10. $\{x = q \cdot y + r \land r \ge 0 \land r \ge y\} r := r - y; q := q + 1 \{x = q \cdot y + r \land r \ge 0\}$ (8)(9)(CONS)
11. $\{x = q \cdot y + r \land r \ge 0\}$ while $r \ge y$ do $r := r - y; q := q + 1$ od $\{x = q \cdot y + r \land 0 \le r \le y\}$

- 11. $\{x = q \cdot y + r \land r \ge 0\}$ while $r \ge y$ do r := r y; q := q + 1 od $\{x = q \cdot y + r \land 0 \le r < y\}$ (10)(REP)
- 12. $\{x \ge 0 \land y \ge 0\} q := 0; r := x$; while $r \ge y$ do r := r y; q := q + 1 od $\{x = q \cdot y + r \land 0 \le r < y\}$ (5)(11)(SEQ)

D* deduction system for proving correctness

- Goal: Proving termination of loops
 while B do P od constructs
- Basic idea: Parametric assertions
 - Parameters from well-founded set
 - E.g., selecting n natural number: arithmetic extension of the specification language is needed
 - o pi(x,n) parameterized loop invariant



Modified REP rules for proving correctness:

○ REP*: $pi(\underline{x},n) \Rightarrow B \text{ and } < pi(\underline{x},n) > P < pi(\underline{x},n-1) > and pi(\underline{x},0) \Rightarrow B
<∃n:pi(\underline{x},n) > while B do P od < pi(\underline{x},0) >$

All other rules are the same, writing <...> instead of {...}

Properties of the deduction system

- Notation for the proof of a statement C: Tr₁ |-_D C where
 - I domain, Tr_I the axioms and deduction rules of the domain
 - D the deduction system
- Properties:
 - The correctness of D defined above can be proven
 - Tr₁ |-_D {p}P{q} results in |=₁ {p}P{q}
 - The completeness of D cannot be proven:
 - If the axioms and rules of the domain are complex enough (e.g., contain the arithmetic of natural numbers): Gödel's first incompleteness theorem holds, i.e., there are statements that are not provable

Practical implementation:

- The semantics of the programming language (syntactic constructs) have to be mapped to axioms and rules
- The theorem prover shall include the axioms and rules of the domain
- Strategy (or search) is needed for selecting proper domain rules
- The specification language shall be expressive enough

Summary

- For low-level flow languages:
 - Partial correctness for loop-free programs
 - Backward computational induction
 - Partial correctness for programs with loops
 - Inductive assertions
 - Correctness for programs with loops: Proving termination
 - Inductive assertions with a decreasing parameter from a well-founded set
- Structured languages (while programs):
 - Partial correctness:
 - Deduction system with structural induction
 - Correctness:
 - Deduction system with parameterized inductive assertions
 - Arithmetic extension to have a well-founded set

Proving program correctness in practice

Classic examples:

- Spec# Programming System: C# extension
 - Preconditions, postconditions (for methods) can be specified
 - Object level invariants (e.g., ranges for variables) can be given
 - Boogie2: To prove postconditions in an automated way
- JML: Java Modelling Language
 - Preconditions, postconditions, invariants can be specified
 - ESC/Java2: Proof of postconditions for a JML subset
- SPARK: Ada language subset
 - Proof by using an interactive theorem prover
- B method: Specific modelling language and approach
 - B4Free, Rodin: The derivation of verification conditions (to be proven) and theorem proving are automated (with some manual support)
 - Focus: Consistent refinement of a specification