
Budapest University of Technology and Economics 
Department of Measurement and Information Systems 

Budapest University of Technology and Economics 
Fault Tolerant Systems Research Group 

Code-based Test Generation 

Dávid Honfi, Zoltán Micskei 

1 



Motivation 

 Goal: Developer testing of modules (units, 
components) 
o At this level, specification (for specification based testing) 

may be missing 

 Idea: Generate test inputs based on the code 
o Source code coverage criteria can be satisfied (to execute 

all parts of the code) 

 How test outputs are checked? 
o Based on overall expectations (on the basis of higher level 

specifications) given by the tester 

o Using generic criteria: avoiding crash, OS level error signal, 
exception, timeout, violated assertion 

o Re-using outputs of previous test (regression testing)  

2 



Random test generation 

Random selection from the input domain 

 Advantage: 

o Very fast 

o Very cheap 

 Ideas: 

o If no error found: trying different parts of the domain 

o Selection based on: ”difference”, ”distance”, etc.  

 Tool for Java: 

7 



Annotation-based test generation 

 If the code contains: 

o Pre- and post-conditions (e.g.: design by contract) 

o Other annotations (e.g., loop invariants) 

 These are able to guide test generation 

11 

/*@ requires amt > 0 && amt <= acc.bal; 

    @ assignable bal, acc.bal; 

    @ ensures bal == \old(bal) + amt 

    @   && acc.bal == \old(acc.bal - amt); @*/ 

  public void transfer(int amt, Account acc) { 

    acc.withdraw(amt); 

    deposit(amt); 

  } 



Annotation-based test generation: Tools 

 AutoTest 

o Eiffel language, with Design by Contract 

o Input: object pool 

• Random generation of inputs that satisfy the preconditions 

o Expected output: checked on the base of the contracts 
o Ref: Bertrand Meyer et al., "Program that Test Themselves", IEEE Computer 

42:9, 2009. 

 QuickCheck: Property based test generation 

o Goal: Generate test values that take into account the types 
and laws of the input domains 

o Ref: Claessen et al. "QuickCheck: a lightweight tool for random testing of 
Haskell programs“ ACM Sigplan 46.4 (2011): 53-64 

12 



Symbolic execution 

 Static program analysis technique 

 Basic idea 
o Following computation of program paths with 

symbolic variables 

o Deriving reachability conditions as path constraints 

o Constraint solving (e.g., SMT solver):  
A solution yields an input to execute a given path 

 Popular nowadays: 
o Efficient SMT solvers exist 

o Used to generate test inputs for covering given paths 

o Mixing symbolic and concrete execution: “Concolic” 

18 



Program paths and related inputs 

20 

int fun1(int a, int b){  
  if (a == 0){ 
    printf(ERROR_MSG); 
    return -1; 
  }  
  if (b > a) 
    return b*a + 5; 
  else  
   return (a+b) / 2; 
} 

 
 
1 
2 
 
 
3 
 
4 

a == 0 

a: 0 
b: 0 

T 

b > a 

F 

a: 1 
b: 2 

T 

a: 2 
b: 1 

F 

Exploring program paths, 
together with branch conditions 
 Deriving path constraint (PC)  

for each path 

For each path: 
Selecting inputs 
that satisfy path 

constraints 



Example for deriving path constraints 

Path constraint 

Symbolic variables 

Statement ID 

21 



Tools available 

Name Platform Language Notes 

KLEE Linux C (LLVM bitcode) 

Pex Windows .NET assembly VS2015: IntelliTest 

SAGE Windows x86 binary Security testing, SaaS 
model 

Jalangi  - JavaScript 

Symbolic 
PathFinder 

 - Java 

Other (discontinued) tools: 
CATG, CREST, CUTE, Euclide, EXE, jCUTE, jFuzz, LCT, Palus, PET, etc. 

25 

More tools: http://mit.bme.hu/~micskeiz/pages/cbtg.html  

http://mit.bme.hu/~micskeiz/pages/cbtg.html


Microsoft IntelliTest 

26 

Generate unit tests for your code with IntelliTest 
https://msdn.microsoft.com/en-us/library/Dn823749.aspx 

SEViz (Symbolic Execution VisualIZer) 
https://github.com/FTSRG/seviz  

https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://github.com/FTSRG/seviz
https://github.com/FTSRG/seviz


Challenges for symbolic execution 

1. Exponential growth of execution paths 

2. Complex arithmetic expressions 

3. Floating point operations 

4. Compound structures and objects 

5. Pointer operations 

6. Interaction with the environment 

7. Multithreading 

8. … 

30 

T. Chen et al. „State of the art: Dynamic symbolic execution for automated test generation”. 
Future Generation Computer Systems, 29(7), 2013 



Challenges (1) 

Exponential growth of execution paths 

 

 

 

 

 

 Ideas:  

o Various traversal algorithms instead of DFS 

o Method summary: simple representation of methods 

31 

int hardToTest(int x){ 
 for (int i=0; i<100; i++){ 
  int j = complexMathCalc(i,x); 
  if (j > 0) break; 
 } 
 
 return i; 
} 



Challenges (2) 

Complex arithmetic expressions 

 Most SMT solvers cannot handle these 

 

 

 

 
 

 Ideas: Using specific solvers for different cases 

o E.g., CORAL is specially designed for these problems 

32 

int hardToTest2(int x){ 
 if (log(x) > 10) 
  return x 
 else 
  return -x; 
} 



Challenges (6) 

Interaction with the environment 

 Calls to platform and external libraries 

 
 

 

 

 

 Idea: 

o „Environment models” (KLEE): for simple C programs 

o Special objects representing the environment (Java) 

 

 

34 

int hardToTest3(string s){ 
  FileStream fs = File.Open(s, FileMode.Open); 
  if (fs.Lenth > 1024){ 
    return 1; 
  } else 
    return 0; 
  }   
} 



EVALUATIONS 

43 



Applying these techniques on real code? 
 A large-scale embedded system (C) 

o Execution of CREST and KLEE on a project of ABB 
o ~60% branch coverage reached 
o Fails and issues in several cases 

 

 Does it help software developers? 
o 49 participants wrote and also generated tests 
o Generated tests with high code coverage did not discover 

more injected failures 

 
 Finding real faults 

o Defects4J: database of 357 issues from 5 projects 
o Tools evaluated: EvoSuite, Randoop, Agitar 
o Only found 55% of faults – requirements were missing 

 
44 

X. Qu, B. Robinson: A Case Study of Concolic Testing Tools and Their Limitations, ESEM 2011 

G. Fraser et al., “Does Automated White-Box Test Generation Really Help Software Testers?,” ISSTA 2013 

S. Shamshiri et al., „Do automatically generated unit tests find real faults? An empirical study of effectiveness 
and challenges.” ASE 2015 


