
1
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem
Hibatűrő Rendszerek Kutatócsoport

State Based Modelling

2

Table of Contents

Behavioural Modelling

State Partitioning

Simple (Mealy) Automata

State Machine Extensions

Outlook, Softwares

3

BEHAVIOURAL MODELLING

Behavioural
Modelling

State
Partitioning

Simple
(Mealy)

Automata

State Machine
Extensions

Outlook

4

Structural and Behavioural Modelling

 Structural

o static

owhole and part, components

o connections

 Behavioural

o dynamic

o timeliness

o states, processes

o reactions to the
environment (context)

The main components of the robot
vacuum cleaner are the control unit,

the roller gear and the vacuum cleaner.

For the command „to right”
changes the roller gear its
operational mode to „turn”.

4

5

Viewing Points of Behavioural Modelling

 What the system ,,does”?

 What are the properties of the system now, and
how do they „change”?

Event based models

Process based models

State based models

…

6

Motivating Example: Virtal Keyboard

 What happens, if the top left corner is touched?

o Q, q, 1 or =

o Is it fully determined by „the past” only?

q

Q
Q

1 =

7

Basic Terms: Discrete Events

 Event

o instantaneous change (e.g. at the input/output of the system)

 Event stream

o e.g. one per input/output – one per data source

 Event space – {allowed events}

o Readable input values / emittable output values

 Series of (instantaneous) Events, ≤ 1 at a time

t
4:00 8:00 20:00 24:0012:00 16:00

Event stream: smart phone status messages
Event space: {Email, SMS, Battery low}

E E EE EE ES S B

8

Event Based Programming

9

STATE PARTITIONING

State
Partitioning

Behavioural
Modelling

Simple (Mealy)
Automata

State Machine
Extensions

Outlook

10

Key Concept: State Space
The state space

 is a set of distinct system states,

 from which always exactly one element (the current state) is
characteristic for the system at a time.

10

o Examples: state spaces
• days: {Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday}

• States of the microwave oven:
{full power, defrost, off}

o Examples: current state
• Today is Thursday.

• The microwave oven is off.

11

Properties of the State Space

o Not any set of states can be a state space!

 Completeness

o Always at least one of the states is active

o Counter example (not a state space!)

• {Monday, Tuesday, Thursday, Saturday} not complete

 Mutual exclusivity

o Only a single state can be current in a moment

o Counter examples (no state spaces!)

• {Working day, Weekend, Afternoon} comp. but not exclusive

• microwave oven: {door is open, switched off}

„ always exactly one element is characteristic for the system”

12

Why Are These Properties That Important?

 On the 29th February at the airport of Düsseldorf

13

State Refinement, State Abstraction
State refinement and state abstraction, respectively,
are set refinement and set abstraction on a state space
that result in a new state space.

13

o (other kinds of abstraction will be discussed later …)

B
1

B
3

B
2

a
1 a

2a
3

Repetition:
Set refinement

14

State Refinement, State Abstraction

 State refinement/abstraction:
Set refinement/abstraction of a state space

o {Mo, Tu, We, Th, Fr, Sa, So}

{Working day, Weekend}

o Abstraction of the microwave oven

• {full power, defrost, off}  {on, off}

• „off” state was not refined

le
ss

 in
fo

rm
at

io
n

A
b

st
ra

ct
io

n

R
ef

in
em

en
t

m
o

re
 in

fo
rm

at
io

n

Only they are
relevant for a

schedule.

IS IT TRUE?

15

Motivation for Refinement

 State refinement: Why?

o Adding implementation detail during a design process

• e.g. knowing the possible power levels of the oven is
important for designing its power adaptor

o Specialization / extension

• e.g. a more advanced oven may contain timer

o Joint behavior of several subsystems (see later)

 More information, more knowledge

oWhat is the trade-off?

16

Motivation for Abstraction

 State abstraction: Why?

o Useful if the abstract states are „uniform“

• Merged sub-states are similar in certain aspects

o Details may be irrelevant for some design phases

• Easier to work with smaller, simpler state space

• Less storage for the states, easier processing

• Hidden details can be changed

• Corner-case: stateless model (𝑆 = 1)

o Sometimes only limited amount of information can be
disclosed

o Frequent form: decomposition (see it later)

17

 Multiple correct state spaces of a single system

 E.g.: two disjoint state spaces of the microwave

o according to power: {full power, defrost, off}

o according to door position: {open, closed}

o not completely independent:
if the door is open, power must be switched off

 State space of the subsystem

o It is decidable without knowledge of the system state,
which state of the subsystem is the current one.

Partitioning from Multiple Viewpoints

18

(Direct) Product of State Spaces

 Considering two state spaces together

o S1 = {full power, defrost, off}

o S2 = {open, closed}

S1 × S2 open closed

full power
full power and

open
full power and

closed

defrost
defrost and

open
defrost and closed

off off and open off and closed

state abstraction
(projection)

state
ab

stractio
n

Remark: |S1 × S2| = |S1| ⋅ |S2|

19

(Direct) Product of State Spaces
Direct product of state spaces

 Composition operation over the component state spaces

 that results in a new state space (product state space),

o which is formed as the Descartes product of the sets
of the component state spaces.

In the product state spaces corresponds

 to each combination of the states of the component state
spaces

 a combined state (state vector) .

{AM,PM} × {1h..12h} × {0m..59m}

𝑃𝑀, 12ℎ, 08𝑚

∈

20

Projection of the State Space to a Component

Projection to a component is

 a state abstraction operation

 that from the product state space

o keeps one or more components,

o and neglects the others.

{AM,PM} × {1h..12h} × {0m..59m}

𝑃𝑀, 12ℎ, 08𝑚

∈

𝑃𝑀, 12ℎ

(like the projection of tables)

21

Refined Composition of the State Space

 Dependent state variables

o Not all combinations can actually manifest

o Composite state space is more fine than the product

S1 × S2 open closed

full power
full power and

open
full power and

closed

defrost
defrost and

open
defrost and closed

off off and open off and closed

state
ab

stractio
n

Remark: projection is still an
abstraction relationship

state abstraction
(projection)

22

S1 × S2 open closed

full power
full power and

open
full power and

closed

defrost
defrost and

open
defrost and

closed

off off and open off and closed

Refined Composition of the State Variables

 „ Composite state space is more fine than the product”

o … because we excluded two composite states

o ... the refined state space has fewer states!
• until now state space refinement resulted in a higher number of states

• after refinement the number of states can go up or down

• the important thing:
more is known about the system, more precise description is provided

• therefore:
less systems
satisfy the model

23

Decomposition of the State Variables

 Decomposition: reversing production / composition

o off and open

o off and closed

o defrost and closed

o full power and closed

 The projected state variables are abstractions

 Why do we decompose?

o to process state variables separately

o to store state variables separately

S1 = {full power, defrost, off}

S2 = {open, closed}

24

Example from Our Profession

 Where does state-based modelling play a role in IT?

 Social network – relation between Jack and Jill
(certain functions depend on this, e.g. visibility of uploaded pictures)

o State variables:

• Did Jack mark Jill as a friend?

• Vice versa

S1 × S2

no relation Jack knows Jill

Jill knows Jack friends

store separately:
• in RAM
• in a database (permanent)

25

Example from Our Profession

 What is the motivation behind state abstraction?

 Social networks: only a part of the database can
be visible for a single user

o Privacy

• We have no right to learn whether Jack knows Jill or not

o Smaller data traffic

o Decomposition of a software system

• Simpler view component (HTML + CSS + JavaScript) if only
the relevant information is available

• More secure, more flexible

• Single implementation of access control policies

26

Example from Our Profession

 Virtual keyboard for
touchscreens

o state variables?

27

Example from Our Profession

 Programming: how can we store the state?
o Variable with appropriate value domain (object field, etc.)

o Extension: store the state of SHIFT key!
• the alphanumeric mode „remembers” the state of the SHIFT

enum VirtualKeyboardState {
LOWER_CASE,
UPPER_CASE_ONCE,
UPPER_CASE_LOCK,
NUMBERS_COMMON_SYMBOLS,
RARE_SYMBOLS

}
// ...
VirtualKeyboardState keyboardState;

28

Example from Our Profession

 Programming: how can we store the state?
o Extension: store the state of SHIFT key!

o Phenomenon is called state space explosion

enum VirtualKeyboardStateWithMemory {
LOWER_CASE,
UPPER_CASE_ONCE,
UPPER_CASE_LOCK,
NUMBERS_COMMON_SYMBOLS_WITH_LOWER_CASE,
NUMBERS_COMMON_SYMBOLS_WITH_UPPER_CASE_ONCE,
NUMBERS_COMMON_SYMBOLS_WITH_UPPER_CASE_LOCK,
RARE_SYMBOLS_WITH_LOWER_CASE,
RARE_SYMBOLS_WITH_UPPER_CASE_ONCE,
RARE_SYMBOLS_WITH_UPPER_CASE_LOCK

}
// ...
VirtualKeyboardStateWithMemory keyboardStateWithMemory;

29

Example from Our Profession

 Programming: how can we store the state?

o compact solution: multiple state variables

o decomposition of state variables

enum VirtualKeyboardFacet {
ALPHABETIC,
NUMBERS_COMMON_SYMBOLS,
RARE_SYMBOLS

}
enum CapsState {

LOWER_CASE,
UPPER_CASE_ONCE,
UPPER_CASE_LOCK

}
// ...
VirtualKeyboardFacet keyboardFacet;
CapsState capsState;

30

From Other Engineering Professions

 Potential infinite (or even continuum) state spaces
o e.g. state variables of an airplane

• 𝑣 ∈ ℝ speed

• ℎ ∈ ℝ flight altitude

• 𝛼 ∈ Τ−𝜋
2 , Τ

𝜋
2 rise angle

o The state change can be continuous

• e.g. rise of the airplane: Τ𝜕ℎ 𝜕𝑡 = 𝑣 sin 𝛼

 But for typical IT system models

o discrete states (no continuous change)

o often finite state space (counter example: counter ∈ ℕ)

o instantaneous state transitions, fixed states inbetween

h

t
0

h1

h2

Quantisation / Discretisation

31

SIMPLE (MEALY) AUTOMATA

Behavioural
Modelling

State
Partitioning

Simple
(Mealy)

Automata

State Machine
Extensions

Outlook

31

32

From Other Engineering Professions

 Potential infinite (or even continuum) state spaces
o e.g. state variables of an airplane

• 𝑣 ∈ ℝ speed

• ℎ ∈ ℝ flight altitude

• 𝛼 ∈ Τ−𝜋
2 , Τ

𝜋
2 rise angle

o The state change can be continuous

• e.g. rise of the airplane: Τ𝜕ℎ 𝜕𝑡 = 𝑣 sin 𝛼

 But for typical IT system models

o discrete states (no continuous change)

o often finite state space (counter example: counter ∈ ℕ)

o instantaneous state transitions, fixed states inbetween

33

State Transitions

 State space: S

o e.g. S = {Mo, Tu, We, Th, Fr, Sa, So}

 s(t)  S

o The current state as a function of time

t
0:00 24:00 96:00 120:00

WeTu Th Fr Sa So Mo

instantaneous state transition (discrete event)

48:00 72:00

s(t) fixed

34

Repetition: Binary Relation

 Binary Relation :

o subset of the Descartes product of two sets

o R D1  D2

D1 D2

a

d

b
c

1

2 3

4

𝑅 = 𝑎, 1 , 𝑎, 2 , 𝑐, 2 , 𝑑, 4

35

State Transitions

 What are possible sequences of states?

o state space S = {Mo, Tu, We, Th, Fr, Sa, So}

o event space: state transition relation R  S  S

• r1=(Mo, Tu)

• r2=(Tu, We)

• r3=(We, Th)

• r4=(Th, Fr)

• r5=(Fr, Sa)

• r6=(Sa, So)

• r7=(So, Mo)

o Also called a state graph

st
at

e
tr

an
si

ti
o

n
ru

le
s

r
R

Mo

Tu

We

ThFr

Sa

So

From Th can
the system
move to Fr

r1

r2

r3

r4

r5

r6

r7

Common
graphical
depiction

36

Remarks about the State Graph

 It is possible that …
o … the graph is complete all transitions are allowed

• Skitten= {sleeping, playing, drinking}

o … not every state is reachable from each state

• Sglass= {empty, full, broken} no path broken ↝ empty

o … some states have multiple successors

off and closed

off and open

defrost and closed

Non-determinism

o Possible sources:

• Behaviour of the modelled system

• Abstraction introduced during modelling

e.g. ignored internal
variables, input from

environment, …

52

SIMPLE (MEALY) AUTOMATA

Behavioural
Modelling

State
Partitioning

Simple
(Mealy)

Automata

State Machine
Extensions

Outlook

52

53

ATM

State Graph Example: ATM

Off

Self Test

Out of ServiceMaintenanceIdle

Customer
Authentication

Selecting
Transaction

Transaction

turnOff

turnOff

turnOn
failure

failure

service

service

cancel

cardInserted
failure

cancel cancel

54

Labelling Transition with Events

 Label of the transition

o Instantaneous event

o Transition can be associated with an event

 Possible interpretations: the event can be…

o ... the result of the transition (post condition)

o… the cause / trigger of the transition (pre condition)

 A Transition can have multiple labels

o Reading input / Writing output

s1 s2
event

Defrost Switched off
bell chime

Switched Off Defrost
press button

Timer signal / bell chime

55

Memory Hook: Mealy Finite State Machine

 Initial state  s0 = s(t=0)

 All transitions deterministic, reading input and writing
output

 Compare to automaton
model in classic system
theory

s1 s2

1 / 0 1 / 0

r6: 1 / 1

0 / 0

0 / 0

0 / 0

StateInput

Transition

G(Input, State)

SYSTEM

Question:
• What does this machine do?
• If rule r6 transfer to s0?s0

56

Extensions of Mealy Machine

 Nondeterministic model (wrt. input)

 „Spontaneous” transition without reading input

o Internal, effect of non-modelled events

o heating finished, oven switches off (timer not modeled)

 Multiple output channels (separate event streams!)

o Disjoint signal sets

o The rule emits signals to a specific subset of channels

 Multiple input channels (separate event streams!)

o The rule reads input signal from a subset of channels

o This can cause non-determinism

57

M1

Extended State Machine

s1

i1:0 / -

i1

{0,1}

i2

{a,b,c}

s2

s3

s4

o1

{0,1}

o2

i1:1, i2:a / o1:1

{d,e,f}

s0

58

M1

Extended State Machine

s1

i1:0 / -

i1

{0,1}

i2

{a,b,c}

s2

s3

s4

o1

{0,1}

o2

i1:1, i2:a / o1:1
Input

channel

Output
channel

Name

Signal (token,
symbol)

Trap / sink

{d,e,f}

Internal Transition

Differs only in
labels

Differs only in
labels

Potential
conflict

Potential
conflict

Loop

s0

Conflict
(non-determinism)

Signal set /
Event space

59

Unspecified Input

 Do we need a rule for every possible input in each
state?

o If no rule  transition is not allowed

• Theoretically it is so, but for real systems it is not realistic

• What happens if such a situation occurs anyway?

o If no rule  invisible loop transition

• All unspecified input tokens are consumed but ignored

o If no rule  invalid model

• E.g. critical embedded system

• Multiple rules are also invalid (determinism is required)

 If there are rules for each case -> fully specified

60

Examples: Comm. Protocol

 Packet based communication protocol

o Packets can be lost, can be damaged

o Acknowledge, resend

 (For more details see course Computer Networks)

TCPreceiver

I1

{valid packet,
damaged packet}

O1

{ACK,
NACK}

waiting
(to the sender)

arrived

(from the sender)

{packet
arrived}

(to application)

i1:damaged/
o1:NACK

i1:damaged/ -

i1:valid /
o1:ACK

O2

61

Examples: Virtual Keyboard

 Virtual keyboard

VIRTUAL KEYBOARD

{BUTTON1,..}

{q,Q,1,=,…}

lower case

upper case
once

upper case lock

Numbers,
common
symbols

BUTTON1 /=

rare
symbols

BUTTON1/q

BUTTON1 /1

62

Examples

 Programming:
implementing
state machine

o Branching condition:

• State variables and

• input

o All branches:

• output emission (if any)

• State transition (if needed)

void handleKey(KeyCode input) {
switch(input) {
case BUTTON_1:

switch(keyboardState) {
case LOWER_CASE:

emit('q');
break;

case UPPER_CASE_ONCE:
keyboardState = LOWER_CASE;

case UPPER_CASE_LOCK:
emit('Q');
break;

case NUMBERS_COMMON_SYMBOLS:
emit('1');
break;

case RARE_SYMBOLS:
emit('=');

}
break;

case SWITCH_1:
//...

q
Q

Q

1

=

65

Remark

 If the (state machine) model is…

o… detailed enough (deterministic), and

o… formalized in a way, which can be processed

• E.g. domain specific languages (protocol design)

• E.g. standard modeling notation (UML)

 … can be translated automatically into source code

o E.g. code generation for a communication protocol

o E.g. development of an embedded controller

 … or can be executed with an interpreter

o E.g. IT system management application

66

STATE MACHINE EXTENSIONS

Behavioural
Modelling

State
Partitioning

State Machine
Extensions

Simple
(Mealy)

Automata
Outlook

66

67

State Chart Languages

 (Harel) State Chart = state machine +

o State hierarchy

o Orthogonality

o Variables

o Pseudo states

o…

 E.g.

o Yakindu

o UML

68

Calculator Example

1

0

2 3

4 5 6

7 8 9

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

2

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

27

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

278

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

278

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

4

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

42

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

11676

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

= +

-

×

÷

On Off

1

0

2 3

4 5 6

7 8 9

= +

-

×

÷

On Off

69

CALCULATOR

State Hierarchy

Reading
operand1

Displaying
result

Reading
operand2

Off

On

Eval

On, DigitOn

Off

Off

Off

Digit

Operator

Digit

70

CALCULATOR

State Hierarchy

Reading
operand1

Displaying
result

Reading
operand2

Off

On

Digit

Eval

On, DigitOn

Off

Off

Off

Operator

Digit

71

CALCULATOR

On

State Hierarchy

Reading
operand1

Displaying
result

Reading
operand2

Off

On

Operator Eval

Digit

Off

DigitDigit

On

72

CALCULATOR

State Hierarchy

 State configuration: {Off}

Off

On Off

On

Reading
operand1

Displaying
result

Reading
operand2

Operator Eval

Digit

DigitDigit

On

73

CALCULATOR

State Hierarchy

 State configuration : {On, Reading operand1}

Off

On Off

On

Reading
operand1

Displaying
result

Reading
operand2

Operator Eval

Digit

DigitDigit

On

74

CALCULATOR

State Hierarchy

 State configuration : {On, Reading operand2}

Off

On Off

On

Reading
operand1

Displaying
result

Reading
operand2

Operator Eval

Digit

DigitDigit

On

75

CALCULATOR

State Hierarchy

 State configuration : {On, Reading operand2}

Off

On Off

On

Reading
operand1

Displaying
result

Reading
operand2

Operator Eval

Digit

DigitDigit

On

Two active statesWhat about mutual exclusivity?
• A statechart is not a state space
• Only states on the same hierarchy level give a mutual

exclusive set of states. (but not a state space, either)

76

BANK ATM

Serving Customer

ATM Example

Off

Self Test

Out of ServiceMaintenanceIdle

Customer
Authentication

Selecting
Transaction

Transaction

turnOff

turnOff

turnOn
failure

failure

service

service

cancelcardInserted
failure

77

Example: robot hoover

78

MODE OF THE

ROBOT HOOVER

PLACE OF THE ROBOT HOOVER

Orthogonality

Pile
surface

Wet
surface

Flat
surface

inactive

cleaning

w | f

deactivate |
activate

79

PLACE AND MODE OF THE ROBOT HOOVER

Orthogonality

Pile
surface

Wet
surface

Flat
surface

inactive

cleaning

w | f

deactivate |
activate

80

PLACE AND MODE OF THE ROBOT HOOVER

Orthogonality

 State configuration: {pile surface, inactive}

Pile
surface

Wet
surface

Flat
surface

inactive

cleaning

w | f

deactivate |
activate

81

PLACE AND MODE OF THE ROBOT HOOVER

Orthogonality

 State configuration: {pile surface, cleaning}

Pile
surface

Wet
surface

Flat
surface

inactiv

cleaning

w | f

deactivate |
activate

82

PLACE AND MODE OF THE ROBOT HOOVER

Asynchronous Product

Pile
surface,
inactive

Wet
surface,
inactive

Flat
surface,
inactive

w | f

Pile
surface,
cleaning

Wet
surface,
cleaning

Flat
surface,
cleaning

w | f

 Needs further refinements: Transitions are
excluded  States may become unreachable

deactivate | activate





deactivate | activate

deactivate | activate

83

Definition: Asynchronous Product
The asynchronous product of (Mealy-) state machines is a
composition operation over the component state machines
(also called the regions. The result of the composition is a
(Mealy-) state machine.

 State space: the direct product of the state spaces of the regions

 Initial state: every region in its initial state

 Transition rules: all transition rules in which

 exactly one region makes a transition,

 while all other regions keep their actual states.

t1 t2

s1 s2

e

f

s1;t1

s2;t1

e

s1;t2f

84

Variables

 Infinite counter

o 𝑆 = ℕ

0 1 2 …

 Introduction of variables: x

o (like a separate region)

tick tick tick

tick / x := x + 1

count
x := 0

count, 𝑥 ↦ 0 → count, 𝑥 ↦ 1 → …

Actually, x can be considered
as being in an other region…

85

Variable + Guard Condition

 Cycle counter

o 𝑆 = 0,1,… , 𝑖

0 1 … i
tick tick tick

tick

tick [x < i] / x := x + 1

tick [x ≥ i] / x := 0

count
x := 0

 With Guard Conditions:

Actual value of a variable
or actual state of an other

region can be referred

86

Pseudo States

 Pseudo state:

o Semantically it is not a state:

• There is no time instant when it represents the state of the
system

o Syntactically it is a state:

• Can be the start or the end state of a transition

[x ≥ i] / x := 0

count
x := 0 tick

[x < i] / x := x + 1

87

Asynchronous Product: Cooperation

 How can we model cooperation?

o How exactly are the two regions not independent?

PLACE AND MODE OF THE ROBOT HOOVER

pile
surface

wet
surface

flat
surface

inactive

cleaning

w | f

deactivate |
activate

88

Asynchronous Product: Cooperation

PLACE AND MODE OF THE ROBOT HOOVER

pile
surface

wet
surface

flat
surface

inactive

cleaning
w | f [cleaning]

deactivate |
activate

 Cooperation by guards

o The condition of a transition in one region is
a state in the other region.

89

PLACE AND MODE OF THE ROBOT HOOVER

Asynchronous Product: Cooperation

inactive
on pile
surface

inactive
on wet
surface

inactive
on flat
surface

w | f

cleaning
on pile
surface

cleaning
on wet
surface

cleaning
on flat
surface

w | f

deactivate | activate deactivate | activate

deactivate | activate

 

[false] [true]

90

Example: Synchronous Product

 Fridge with compressor & lamp

o Common input: door

COMPRESSOR & LAMP OF THE FRIDGE

light

dark

open
close

{open, close}

idle
open

close

cooling

91

 Reading the input together
 synchronous steps

o (States may become
unreachable)

LAMP

Example: Synchronous Product

COMPRESSOR & LAMP

cooling;
light

light

dark

open
close

COMPRESSOR

cooling idle
open

close

idle;
dark

idle;
light

cooling;
dark

open

close





92

Synchronous Product

 Product of state machines

o Composing the model from state regions (components)

o State space: direct product of the region state spaces

o Initial state: n-tuple of the initial states of every region

 Transition rules: all transition rules in which

• each region makes a transition at the same time.

• „gluing” transitions, union of the labels

t1 t2

s1 s2

e

f

s1;t1 s2;t2

e, f

93

Mixed Product

 Product of state machines

o Composing the model from state regions (components)

o State space: direct product of the region state spaces

o Initial state: n-tuple of the initial states of every region

 Transition rules: sometimes synchronised
• Basically an asynchronous composition …

• … but in some cases the regions act together

A simple case of
synchronisation: there are

(also) common inputs

94

 Further refinement required

o Transitions may vanish

o (States may become
unreachable)

Example: Mixed Product

MAGNETRON

off on
/

DOOR

closed

opened

o
p

en
/-

cl
o

se
/-

start / -
open / -

start / -

DOOR & MAGNETRON

cl. &
off

op &
on

cl. &
on

op &
off

o
p

en
/

-

cl
o

se
/-

cl
o

se
/-

start / -

start / -

open / -

Neglected inputs:
„imaginery” loops

/

/





start / -

start / -

start / -

95

Mixed Product

 Product of state machines

o Composing the model from state regions (components)

o State space: direct product of the region state spaces

o Initial state: n-tuple of the initial states of every region

 Transition rules: sometimes synchronised
• Basically an asynchronous composition …

• … but in some cases the regions act together

A simple case of
synchronisation: there are

(also) common inputs

Advanced cooperation: rendezvous
(internal synchronising event)

96

Overview of Products

 Product of state spaces

o Direct product: S1 × S2 × …× Sn

• Composed states: n-tuples of the states of the components

 Product of state machines

o The state space is always (refinement of) the direct product

o Synchronous product

• The components/regions step always at the same time

o Asynchronous product

• The components/regions step always one at a time

oMixed product

• Sometimes at the same time and sometimes one at a time

97

Overview of Products

 Product of state spaces

o Direct product: S1 × S2 × …× Sn

• Composed states: n-tuples of the states of the components

 Product of state machines

o The state space is always (refinement of) the direct product

o Synchronous product

• The components/regions step always at the same time

o Asynchronous product

• The components/regions step always one at a time

oMixed product

• Sometimes at the same time and sometimes one at a time

Modes of cooperation

Rendezvous

Guards

