Process Modelling

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

L L

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Table of Contents

Role of Process Modelling

Process Models

Implementation

Table of contents

Structure and Behaviour Modelling

= Structural The main components of the robot
vacuum cleaner are the control unit,

o Static the roller gear and the vacuum cleaner.

o Whole and part, components
o Connections

=\Behavioural
_ For the command ,to right”

o Dynamic changes the roller gear its
o Timeliness operational mode to ,turn”.

o State, Process
o Reaction to the environment (context)

= Modelling does not cover all aspects, aspects
cannot be separated...

Main Questions of the Behavioural Models

"= What the system , does”?

Event based model

— Process based model

= What are the properties of the system now, and
how is it changing?

— State based models

Main Questions of the Behavioural Models

= State Based Approach
o the system changes (its properties)
o as a reaction to (external) events
o input/output channels

" Process Based Approach
o the system changes the work item
O as a series of activities

o data flow

Definition: Process

Process: series of steps that achieve purpose when executed in
the right order

Table of Contents

Role of Process Modelling

Role of Process Modelling

= Specification
= Design
" Implementation

o Executable models
o Code generation

= Model verification
o Simulation
o Monitoring
o Automated model checking

" Documentation

Example: How Does the Product Arrive?

Package 1
Product's predicted arrival to our store: 23.03.2016

When the products are ready to pick up, we will send you a notification in text
message and e-mail. You will be able to pick up the product immediately after
you recieved the notification.

Please do not come to our store before recieving a notification. Thank you!

Ordered products in the package:

Name of product Prize
1% FISKARS Xsharp axe and knife sharpener 120740 3 590 HUF
1% FISKARS Twisted splitting wedge 120020 6 990 HUF
1T MOTOROLA TLKR T41 Walkie talkia, Orange 8 590 HUF
Payment fea 490 HUF

Package price: (including shipment fee and VAT) 19 660 HUF

Example: HW Delivery

Take out extra
insurance

Logistics
Manager

extra insurance
required

Check if extra
insurance is
necessary

Fill in a Post
label

Normal Post

Clerk

Hardware Retailer

Decide if Assign a
Request :
normal post or . . carrier &
; Special Carrier- quotes from
special . N prepare
carriers

paperwork

shipment
Mode of delivery .

Add paperwork

Package PN o and move
goods . v package to

Warehouse
Worker

. pick area .

. Insurance is Goods available

Teee e included in carrier for pick
service

omg.org, BPMN 2.0 by Example

MOGEGYETEM 1782

Example: HW Delivery

Paired

Take out extra ContrOI elements

insurance

extra insurance
required

Check if extra
insurance is
necessary

Fill in a Post

@

5
5
§ E Normal Post
o |2
= (&]
g Decide if Request Assign a
k= normal post or . . q carrier &
© ; Special Carrier- quotes from
T special . carriers prepare
shipment : paperwork
G°°d,s Mode of delivery .
to ship '
Decision points (“XOR”)
° Add paperwork
3 Package A and move
25 goods . package to
%E : pick area Good bl
£ oods available

for pick

Insurance is
« « included in carrier
service

III

“Parallel” (independent)
execution (“AND”)

Order of execution

ETEM 1782

What It’s Based On

= History
o Programs control structures
o Scheduling (eg. GANTT diagrams)
o Modelling manufacturing/office processes
o IDEF-0: 1980’s, US AirForce
o Describing logistic processes
®

System operator’s/administrator’s “runbook”

= Common elements
o There are atomic steps
o Dependencies between them (time? data? order?)
o Decision points

o -2 general-purpose process modelling languages (eg. BPMN)

Example: IDEF-0

Detected or suspected malfunction, or
item is scheduled for bench-check

In-service
asset Remove
and Replaced asset
7-’- replace 4 o
Spare Reparable
asset asset
Schedule Status records
into
shop 5]

Supply
A

data dependencies and execution logic are not shown

logical dependencies are shown

Assets
s Asset
/ (after Completed
repair) Monitor assal -
and
route 4
—I Spare
Node: Title: Number:
AOF Maintain Reparable Spares pg. 4-5

Defense Acquisition University - Systems Engineering Fundamentals. Defense Acquisition University Press, 2001

http://www.dau.mil/pubs/pdf/SEFGuide 01-01.pdf

Example: GANTT

WEEKSE: 1 £ 3 4 3 & T E 8 10Z] ZFZE

WES 1 Summary Element 1 — =7 cornpiee

WHBE 11 Achwity A

T ART-TO-START
WHBE 12 Achwity b . TETP

FINIZH-TO '-'.i.l-\!"
WHBE 13 Achwity C

FIMEH-T-FIMNS

State, timing and dependencies of activities

WHBE L] Aclvity E

WBE 22 Achwity F

Ty

WHBE 43 Achvity &

wikipedia.org

What It Uses

= |dea in system/software design:
o Use existing elements
o Describe how the complex system operates

= Basic elements can be many

o webform validation, sending email, database
operation, remote web service, human interaction,
sending text message, drawing diagram, etc.

What is Derived from the Control Logic?

= Program code directly (C/C++, C#, Java, ...)

" |nput of an executing environment
o “Create this process for me”

i [Existin
components
- Integratlon

Other Uses of Process Models

= Operating IT systems
o ITIL, UK Gov. initiative

= Protocol specification
o Cooperation between elements of a complex system
o Roles of components

= Desighing executable processes

o Order evaluation, credit assessment preparation, ...

= Data processing/analysing processes

Example: Managing Health Data

v

Precondttion: In this configuration, "Human User A and Source” together represent Organziation A, i.e. either a Consumer or a Smal Business. "Human
-\} -------- User” in this Abstract iModel may be replaced by an "Automated Process.’
mechanism {e.g., port and domain, REST URI, UR! hosting a WSDL) by w . . .
standard configuration. Error condiions not shown. Sub-processes are Seve ra | p a rt Ies communic at| N g
'/Authenticat) = Selects = (s R

with each other

=& ficates [Finalizes Secure /" packages [1.2 Sends 1.3 Receives Message | :
L 5°Uf°° to HISP . Session)] Message ' ’l\’ Message | Status Information ACK
. " L%

A

Fa) ray
- NHIN Direct Message :

Internal sequential é "‘“"""“‘"'““"’“",

Prior Secure

dependencies ocses \To Destontin “Sonda™ | Seasion Tsk
Initializing another

| secure session

i..{ Precondition: In this

c°"‘?_'°‘” Communications FromHISP ™ 35) icts Available NHIN | | 3.3 Downloads iy " 34 Updates message 2
@;: Direct Messages Message to Display l status with the HISP J
' Internal and external A

configuration, "Human
User B, Destination,

events
and HSP are located in 3 —

e — Presumptions—> can’t be

automated

Example: Agile Development, as a Process

Roles, products

gm Where am |

Scrum Cverview

Scrum Roles = Scrum Team

Scrum Overview

El /& Scrum Roles

£ Product Owner

& Scrum

| B Tean
&3 Scrum Waork Products
Scrum Activities
(=) Scrum Guidance

The Scrum Team builds the product that the customer is going to consume: the software or website, for example. The team
in Scrum is "cross-functional” - it includes all the expertise necessary to deliver the potentially shippable product each
ﬁ Sprint - and it is "self-organizing”, with a very high degree of autonomy and accountability.

Role Sets: Scrum Roles

pllapse All Se:

: Steps of teamwork
perfarms Estimating the Release Planning Sprint Planning Sprint Sprint Review The Daily Scrumr
LQ}/, Froduct Backlag Meeting Retrospective Meeting
Scrum Team responsible for) i
Potentially Release Burndown Sprint Backlag
Shippable Product Cha

Incremement

http://www.eclipse.org/epf/

UGEGYETEM 1782

= Modelling banking processes

o What activities are executed closing time?

o Could the bank switch to transferring multiple times a day?
* Modelling manufacturing process

o Optimal production scheduling: convert or fabricate?

o What happens in the factory?

o (see the lecture on Simulation)
= Modelling business transactions

o Where are recurring communication patterns?

o Model based data processing

Example: Data Processing

Eile Edit View Node

Search Run Help —_—

[

Steps: reading, data filtering,
graph generation, ...

A Frcorte Nodes 77
¥ Perzonal favorite nodes
2 Mozt frequently uzed nodes
@ Last used nodes

A\ Node Repository =0
wrni v |
oy 10
£ Write
i Covwirites
g ARFF Writer
§ Table Writer
Tow PMML Wiriter
P Model Writer
H XLS Writer
=5 Other
51 Image Column Wrter
P Image Port Writer
E! Datsbase

B s i e ,. & States of steps can be tracked:

2 o
%y XML Wraer

i — = _ is the result produced?

UGEGYETEM 1782

Basic concepts of designing processes

= Process description languages
o BPMN, jPDL, XPDL, BPEL, UML AD, ...

= Process model

o Control, dataflow

o Data structures can be linked to a process model
o Definition of steps to execute

o Timings, resources

" Process (template) vs. process instance
o E.g. ,Booking tickets” as a process

o ,Laszlo Gonczy books a ticket to Lisbon” is an instance

Table of contents

Process Models

Elementary Activity (Task)

=

Execution starts Execution ends

- I
| |
< Compile >1
|
|
I

> T

Definition: Elementary Activity

An elementary activity is an activity that
" has a positive temporal duration
" js not modelled beyond its start and end.

=

Sequence, Control Flow

__--;,[Compile]—---a{

Link

|

I
I
I
E< Compile
|
I

- -

> T

Definition: Sequence

Sequence defines the order of execution of activities.

N g BN g B

Guard Condition, Branches

[source unmodified]

= Semantics:
o Only one branch is executed

o Possibility of nondeterminism
* Overlapping guard conditions
* Or simply no guard conditions

Definition: Control Element

A control element is a junction of the process choosing one or
more activities to execute.

[source unmodified]

Definition: Decision-Merge

Decision-Merge is a control structure
= consisting of a Decision and a Merge control element, where

= the decision node has at least two outputs from which we
choose where to put the control token by evaluating the
guard conditions,

* the chosen output (branch) can contain an arbitrary number
of elements, and

= each branch leads to the merge node.

= Here we use branch as an exclusive or (XOR gate), which means that as a result
of an evaluation only one of the decision branch is chosen.

= A branch can be multiple or binary, in the course we use binary decisions (two
outputs).

[no syntax errors]
----Q---)[Compile }----O----)

1
1
i [syntax errors]
1

I---
|
|
|
|
:
*
o
;I:
i
|
|
|
|
1

Compile

> 1

I
I
I
E< Compile
|
I

- -
-l

g

~

>\~‘
e
D
e o i

Definition: Loop

A loop is a control structure that defines multiple execution. The
loop

= consists of a Merge and a Decision element, where

= one of the branches of the decision node leads back to the
merge node.

= Note: this corresponds to a repeat - until loop

[no syntax errors]
----)Q---)[Compile]—----><>-----)

Fork / Join
A e -y (D

____________ >

W T Compile ="
source2.c

Compile
sourcel.c

Compile
source2.c

> T

<
i

— -
- _A———

Fork / Join

Compile
=" sourcel.c

W T Compile ="
source2.c

Compile
sourcel.c

Compile
source2.c

> T

—————— -
-, -

- =

|

Fork / Join

Compile
=" sourcel.c

W T Compile ="
source2.c

i | | |
K | Compile > !
: kourcel.c . I
i : ! :
! < Compile | >:
| | source2.c | '
| | St
| | | |

Fork / Join
A e -y (D

____________ >

W T Compile ="
source2.c

| i | |
| K Compile > !
! : sourcel.c : :
I ! ! I
< ! Compile | >:
| ! sourceZ.c ! !
| I I > t
I I | |

Fork / Join

Compile
————— sourcel.c

W ~~~~~ Compile | _---""
source2.c

= Semantics:
o Execution sequence is not specified
o Parallel/ overlapped execution is possible

= See: Computer architectures course

Definition: Parallel Execution

Parallel execution (Fork-Join)

= contains a Fork and a Join control element, where
* the fork can have an arbitrary number of outputs (branches).
" branches can be executed concurrently,

= all branches lead to the join node, and

= parallel execution ends, when all branches terminate.

Two activities are concurrent if the order of their execution is
not controlled.

= Note: we are going to work with two parallel branches.

= NOT equivalent to Decision-Merge!

Flow Begin / Flow End

‘9[Build]—>@

Definition: Flow Begin/End

Process starts with a Flow Begin control element and ends with a
Flow End element.

= The begin node is the first node of the process, with exactly
one output.

* The end node is the last node of the process with exactly one
input.

Note: we do not model what causes the process to start

4 Build A

‘"_-)' ‘--- Compile]—---B{ Link]—-->@ "“>@
_ J

Build }
|

| | |
Compile >i |l< Link >|
| |

mrr Y .

Definition: Hierarchy

Hierarchical process model:

" |nstead of an atomic activity it can contain a submodel
described by a process model (hierarchical refinement).

References / Calls

& s)0

-

Build

‘>[Compile }a{ Link }>@

~N

J

|
Build }
|

| | |
Compile >i |l< Link >|

mrr Y .

References / C>!ls

Elementary task?
Actually a subprocess!

Can be embedded into the main process if the refinement is valid:
* The steps combined produce the same thing as the process
* No unhandled case on caller level

(Input/output consistency)

Well Structured Process

" Building from control blocks
o One entry point, one exit

o Sequence, decision-merge and fork-join blocks, loop,
elementary activity, (empty control section)

= Analogy: structured programming
o Control structures instead of goto

= Example of a non-well-structured process

Well Structured Process

= Some formalisms enforce it
o eg. BPEL (business process over web services)
o eg. Structogram (Nassi-Shneiderman)
o programming languages without goto, break, etc.

while a # b do

true a > b false

a := a - b ‘ b := b - a

return a

Example: Coffee Making Process

LEFT SIDE BREWING
1. Fill LEFT reservoir with
COLD water
2. Place cup or mug on LEFT
side of unit base
3. Place pod in LEFT side of

brew basket

4. Plug in unit and press

LEFT SIDE START / STOP

Follow both LEFT and RIGHT
instructions to make two cups at a time

Example: Coffee Making Process

¢

LEFT SIDE BREWING
1. Fill LEFT reservoir with .
COLD water

Place cup on
2. Place cup or mug on LEFT LEFT side

side of unit base i

3. Place pod in LEFT side of Place pod in
brew basker

4. Plug in unit and press
LEFT SIDE START / STOP

in and press
Follow both LEFT and RIGHT Plug . P
instructions to make two cups at a time LEFT side START

Example: Coffee Making Process

®

F|II
LEFT reserv0|r

[]
[P'iéﬁfs.z:“ J
[]
[]

Place pod in
LEFT side

Plug in and press
LEFT 5|de START

&

Example: Coffee Making Process

\ 4
*
—"—— I ~~~~~
—"— I ~~~~
. ”‘ Y ~~~ .
Fill Place cup on Place pod in
LEFT reservoir LEFT side LEFT side
~~~~ - : _ ",—
=~ -~ ! - -="
1
1
A4

[Plug in and press]
LEFT side START

6




Comparison

= State machine =" Process

¢

B — S

l l l ’—,——f | ~~~~~~~
| I Pt iae ¥ TS ~ao
Tank empty | No cup 1 No pod - -
| ” k:‘ l ., Fill LEFT [ Place cup on ]l Place pod in
v Fill tan upt vFlace po . . .
| Tankfiled || Cupplaced ||| Pod placed reservorr LEFTI side LEE-I,- side
N‘\ | -
| | s~~~ I ”’,f
~~~ 1 -
I S TART *I
I
4

[Plug in and press]

LEFT side START

Example: Coffee Making Process

-
-
-
-

~
N~~
~
~
-~y

- b

I
I
I
I
I
I
I
~]
= A4

€---

=
[Fill] [Place cup on] [Place pod in] olug |
LEFT reservoir LEFT side LEFT side ug in
s‘s~~~~~~ i ”"’,gf’ i
‘~~~ 1 - - 1
~ - 1
1
+é i

[Press LEFT]
side START

®

Example: Coffee Making Process

~ 1
S
~a 1

-
-
-
-

- ~
- s

€---

~

1
b= I
[Fill] [Place cup on] [Place pod in] E [
LEFT reservoir LEFT side LEFT side I
- 1 - |
1

-
-
-

~ |
-~y -
~ -
o~ -
~ -
~ 1 -
-~y -
~ - A |

[Press LEFT]
side START

®

Example: Coffee Making Process

_

Press LEFT

[

J

side START

®

i [not plugged in]

[plugged in]

"4

\ 4
I — — — == == == == == —=—=—=—=
1 1
N \
*\
,a”” : ~~~‘~~
- - I ~ -~
- —= .
[Fill] [Place cup on] [Place pod in]
LEFT re§ervoir LEFT side LEF'I" side
~~~~‘~~s~ i ————”"’
-~ l -

e



Example: Coffee Making Process

-

I
[plugged in] \:{

(o)
<><_ _____ i

-~
n----
-y

[ Press LEFT ]
side START

©




Example: Coffee Making Process

-

P i[plugged in] \i{
repare i _
LEFT side | [ Plug in ]
I i
|
D <>
\_ J
: i
+{- -------------------- !
V

[ Press LEFT ]
side START

©




Example: Coffee Making Process

¢

-

1
i[pluggedm] \:{
[ Prepare ] : Plug in
LEFT side = ! 5
i i i
| |
| |
1 < >< ______ [
|
i
| |
X :
—(— --------------------

k

[ Press LEFT ]
side START

©




Example: Coffee Making Process

NV

Prepare \ynot olugged in] [ Prepare ]
LEFT side = RIGHT side »

|
|
|
|
|
I
! :
[plugged in]: [ Plug in ]
|
|
|
|

|
|

*{ ------

A 4 ¥

[ Press LEFT ] [ Press RIGHT ]
side START

side START




Making coffee

-2 A 2
Prepare Prepare
LEFT side =

K

[ Press LEFT ]
side START




I\/Iodelmg based on dlfferent aspects

| rnr

¥
L

‘ ..41#’ ,2 ‘ y’

"j’- \

T O ORI
I L LCCLLEN] on T o X

MOGEGYETEM 1782




What happens to a car?

Assemble Paint Polish _s @
‘- >[ Car; } >[ Car; } >[ Car; }




What happens on the production line?

Assemble Assemble
'- Car, } > { Car, } >@
\ J

|
Assemble
o Cars o \\

/,, \\\

P A S
7 Paint s
- _> ________________ —
‘- N )[ Cars »} e >@
‘~\ Pid
~ Ud




Modeling based on different aspects

Assemble Assemble
'- Car, } > { Car, } >@
\ J

|
{ Assemble }
’ ~
z/’,, Cars nd \\\\\
/’, . \\\
i Paint
__> o= == —
‘- N )[ Cars »} L >@
\\ U4
\\ ,/

Assemble Paint Polish ; @
‘- >[ Car; } >[ Car; } >[ Car; }




Joint View
Assembl Assembl Assemble
‘“{ SSCear1 e}“ -{ SSCear2 e}_ai"é "’i‘_{ Car, }-

Polish > Polish -5 Polish
Car, Car, Car,

" |ncludes everything but not very practical




‘__{Assceanrwlble}__ ] _>[

Polish
Car,

A
ssemble}_>
Car,

1 Assemble s
Car,

This dependency doesn’t come from the
process logic

(resource, physical space, etc. 2 configuration)

Don’t mix it in the process logic...
(see future lectures: resource reservation)

Polish
Car,

Polish
Car,

R {

I®

AN

" |ncludes everything but not very practical




= 2D fork-join net isn’t very practical

o Different processes for different aspects (car’s and
machine’s lifetime)
= Multiple fork-join pairs in a compact way?
— PERT chart

o Program Evaluation and Review Technique

* For analyzing execution time

* (No branching here)




Table of contents

Control Process




Flowchart

A GUIDE TO

YES

— > GOOD

A

UNDERSTANDING FLOW CHARTS

PRESENTED IN FLOW CHART FORM

YES

L
1LET'5'GU_ 6 DRINKS
Y

HEY, T SHOULD
TRY INSTALLANG

FreEBSDL




Flowchart

* Flowchart / decision diagram

o Describes a train of thought for decision making
* Leads to a conclusion

o No temporal sequence

Describing decision points

B Special case: decision tree and their order is difficult

for real problems

A




Example: Erroneous Decision Process

(Monty Python,
picture: graphjam.com)

uuuuuuuuuu

it et chas up Hke Ehis?

Divirk s Bink A il mlas flasts

Inconsistent decision
points

Non mutually exclusive
alternatives

Decision branches don’t
cover all the possibilities..




Control Flow

<statementl>
<statementz>

A
[ statementl ]

A
[ statement2 ]

i
\Z




Control Flow

if (<expression>)
<statement>

[expression fails]

[expression holds] :

\"4

I
I
I
I
I
I
statement :
I
I
I
I
I
J




Control Flow

if (<expression>)

<statementl>
e l Se [expression holds] fl [expression fails]
<statement2> i |
A4 4
[ statementl ] [ statement?2 ]




Control Flow

while (<expression>)

<statement> ,

i [expression fails]

! [expression holds]

I
I
I
I
I
I
statement :
I
I
I
I
I
I
I
I
)




Control Flow

do

<statement>
while (<expression>) —  _____ ,<>

[expression fails]




Control Flow - Example

while (a != b) {
if (a > b) {

a = a — b;
} else {
b= b - a;

J

return a;




Control Flow - Example

/While (a !'= Db) {\

if (a > b) {

a = a — b;
} else {
b= b - a;

}
}

(e turn a; /

6




Control Flow - Example
®

|
/;hile (a '= b) i‘\

if (a > b) {

a = a — b;
} else {
b= Db - a;

}

\. v

[ return a ]

€-—---

®




Example

1
A4
return a

[

=
O
Ll
0
. -
s
C
O
O




1 1
1 1
1 1
1 — |
) N |
— ! i i
p 1 V T |
= A m
© ORI
> i i ! ! | —
L CE I I I
I I “ V]
> RAF
O s
L TR A IR R A
m | S | m “ —
S “ “II S - “
+ i — !
- ! Q| i
O “ Ao m
@ m A m
m “
e e e e e e e e o)




)

foy

3

n|U|2

m+ IIIIIIIIIIIIIIIIIIIIII |

mN “ I

| ! _ “

e | S —
X m I “ V1 m
ol 5=| | “
S [E |

S | = e
= ol —
O S | m

1
"4
return a

[

=
O
L
0
. -
i
C
O
@




Control Flow - Recursion

int fact(int n) {
return
(n ==0) 21 : n* fact(n - 1);




Control Flow - Recursion
int fact(int n) {

int tmpl;
if (n == 0)
tmpl = 1;

} else {
int tmp2 = fact(n - 1);
tmpl = n * tmpZ;

J

return tmpl;




Control Flow - Recursion

2
[return tmpl]

||
é
=~
H 2 H




Example: n choose k

int choose(int n, int k) {
if (k < 0 || k > n) |

return O;

} else 1f (k == 0 && n == 0) {
return 1;
} else {
int x = spawn choose(n — 1, k);
int y = spawn choose(n - 1, k - 1);
sync;

return x + y;




Example: n choose k

choose (n, k)

A

. 7 -)[ return x + y]—

\

( U

‘[y = choose(n - 1, k - 1)}
»

7[ X = choose(n - 1, k) }
/ »)\




EXECUTION OF
BUSINESS PROCESSES




The Semantics of Processes

= The modelling perspective

Request Quote

Submit Evaluate
Requirements Response

= The intended execution

Process
\4 happens before

Definition

Submit
Requirements | —
Evaluate |
Response

Request | I

—
—

Quote I

happens during

gHH




Process Execution

= Token flow

Request Quote

T &> o> o>
Submit ) Evaluate )

: ‘RequirementsJ )[ >0

" The states of the process

Response
State .—)[ Enabled All preconditions
Machine Required met

tokens _ Control flow
present Running finished Tokens

provided
Completed]—)@




States of an Elementary Activity

start of execution end of execution

T
under execution

T
before execution

()
(@)
S
S, N
aQ
&
Q.




States of an Elementary Activity

T T
. I before execution I I under execution I I completed
start of execution end of execution
| |
' :
T ' T T
before execution under execution  /, completed
| |
| |
] [ ]




States of a Process

bef(}re execution
1

| | [ [

I I I I
T, ! T, ! : T, :
before execution : under execution : : completed :
I I | I
| | | |

: I under execution 1\ completea
1 I I
1 1 1




Background: Mathematical Model

= Allen’s interval algebra (1983)
o Used among others at testing, 13 (6 + 1 + 6) cases

X X

X<y X>¥
¥ ¥
Xmy X miy
¥ ¥
X0y X0y
¥ ¥
XSy X 8y
¥ ¥
xty xfiy
¥ ¥
xdy xdiy
¥ ¥

X=Yy

¥

James F. Allen: Maintaining knowledge about temporal intervals.
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832—843, ISSN 0001-0782




Hattér: matematikai modell

= Allen’s interval algebra (1983)

o Used among 013 (6 +1 + 6) cases
,( X BEFOREY

X <y — X=>y

¥
¥

: WAWES X OVERLAPS y [N
¥

X 8y

xfiy

James F. Allen: Maintaining knowledge about temporal intervals.
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832—-843, ISSN 0001-0782




What Can Be Checked?

= The execution is not based on the given process
o Satisfaction of assumptions (order, independence)?

= What is the ,,process” behind system/execution?

o Workflow mining

= |f e.g. the execution environment is permissive
o Steps can be skipped, ....
o Are the requirements still satisfied?

" Tooling: formal methods

o (Temporal )Logics, Petri nets, model checking, etc.




