
1
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Process Modelling

2

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of Contents

3

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of contents

4

Structure and Behaviour Modelling

 Structural
o Static

oWhole and part, components

o Connections

 Behavioural
o Dynamic

o Timeliness

o State, Process

o Reaction to the environment (context)

 Modelling does not cover all aspects, aspects
cannot be separated…

The main components of the robot
vacuum cleaner are the control unit,
the roller gear and the vacuum cleaner.

For the command „to right”
changes the roller gear its
operational mode to „turn”.

5

Main Questions of the Behavioural Models

 What the system „does”?

 What are the properties of the system now, and
how is it changing?

Event based model

Process based model

State based models

…

6

Main Questions of the Behavioural Models

 State Based Approach

o the system changes (its properties)

o as a reaction to (external) events

o input/output channels

 Process Based Approach

o the system changes the work item

o as a series of activities

o data flow

7

Definition: Process
Process: series of steps that achieve purpose when executed in
the right order

8

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of Contents

9

Role of Process Modelling

 Specification

 Design

 Implementation

o Executable models

o Code generation

 Model verification

o Simulation

oMonitoring

o Automated model checking

 Documentation

10

Example: How Does the Product Arrive?

11

Example: HW Delivery

omg.org, BPMN 2.0 by Example

12

Example: HW Delivery

Order of execution

Összetartozó
vezérlési elemek

“Parallel” (independent)
execution (“AND”)

Optional execution

Decision points (“XOR”)

Paired
control elements

14

What It’s Based On

 History

o Programs control structures

o Scheduling (eg. GANTT diagrams)

o Modelling manufacturing/office processes

o IDEF-0: 1980’s, US AirForce

o Describing logistic processes

o System operator’s/administrator’s “runbook”

 Common elements

o There are atomic steps

o Dependencies between them (time? data? order?)

o Decision points

o general-purpose process modelling languages (eg. BPMN)

15

Example: IDEF-0

Defense Acquisition University - Systems Engineering Fundamentals. Defense Acquisition University Press, 2001

data dependencies and execution logic are not shown
logical dependencies are shown

http://www.dau.mil/pubs/pdf/SEFGuide 01-01.pdf

16

Example: GANTT

State, timing and dependencies of activities

wikipedia.org

17

What It Uses

 Idea in system/software design:

o Use existing elements

o Describe how the complex system operates

 Basic elements can be many

owebform validation, sending email, database
operation, remote web service, human interaction,
sending text message, drawing diagram, etc.

18

What is Derived from the Control Logic?

 Program code directly (C/C++, C#, Java, …)

 Input of an executing environment

o “Create this process for me”

Integration

Process modelRequirements
Existing

components
Service

19

Other Uses of Process Models

 Operating IT systems

o ITIL, UK Gov. initiative

 Protocol specification

o Cooperation between elements of a complex system

o Roles of components

 Designing executable processes

o Order evaluation, credit assessment preparation, …

 Data processing/analysing processes

20

Example: Managing Health Data

http://wiki.directproject.org/Abstract+Model+Examples

Several parties communicating
with each other

Internal sequential
dependencies

Internal and external
events
Presumptions can’t be

automated

21

Example: Agile Development, as a Process

http://www.eclipse.org/epf/

Roles, products

Steps of teamwork

22

Examples

 Modelling banking processes

o What activities are executed closing time?

o Could the bank switch to transferring multiple times a day?

 Modelling manufacturing process

o Optimal production scheduling: convert or fabricate?

o What happens in the factory?

o (see the lecture on Simulation)

 Modelling business transactions

o Where are recurring communication patterns?

o Model based data processing

23

Example: Data Processing

Steps: reading, data filtering,
graph generation, …

States of steps can be tracked:
is the result produced?

26

Basic concepts of designing processes
 Process description languages

o BPMN, jPDL, XPDL, BPEL, UML AD, …

 Process model

o Control, dataflow

o Data structures can be linked to a process model

o Definition of steps to execute

o Timings, resources

 Process (template) vs. process instance

o E.g. „Booking tickets” as a process

o „László Gönczy books a ticket to Lisbon” is an instance

27

Implementation

Control Flow

Process Models

Role of Process Modeling

Overview

Table of contents

28

Elementary Activity (Task)

t

Compile

Execution starts Execution ends

Compile

29

Definition: Elementary Activity
An elementary activity is an activity that

 has a positive temporal duration

 is not modelled beyond its start and end.

Compile

30

Sequence, Control Flow

t

Compile Link

Compile Link

31

Definition: Sequence
Sequence defines the order of execution of activities.

Compile Link

32

Guard Condition, Branches

 Semantics:

o Only one branch is executed

o Possibility of nondeterminism

• Overlapping guard conditions

• Or simply no guard conditions

[source modified]

[source unmodified]

Compile Merge

Decision

33

Definition: Control Element
A control element is a junction of the process choosing one or
more activities to execute.

[source modified]

[source unmodified]

Compile

34

Definition: Decision-Merge
Decision-Merge is a control structure

 consisting of a Decision and a Merge control element, where

 the decision node has at least two outputs from which we
choose where to put the control token by evaluating the
guard conditions,

 the chosen output (branch) can contain an arbitrary number
of elements, and

 each branch leads to the merge node.

 Here we use branch as an exclusive or (XOR gate), which means that as a result
of an evaluation only one of the decision branch is chosen.

 A branch can be multiple or binary, in the course we use binary decisions (two
outputs).

36

Loop

[no syntax errors]

[syntax errors]

Compile

Edit

t

Compile Link Compile …

37

Definition: Loop
A loop is a control structure that defines multiple execution. The
loop

 consists of a Merge and a Decision element, where

 one of the branches of the decision node leads back to the
merge node.

 Note: this corresponds to a repeat – until loop

[no syntax errors]

[syntax errors]

Compile

Edit

38

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c

39

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c

40

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c

41

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c

42

Fork / Join

 Semantics:

o Execution sequence is not specified

o Parallel/ overlapped execution is possible

 See: Computer architectures course

Compile
source1.c

Compile
source2.c

Join

Fork

43

Definition: Parallel Execution
Parallel execution (Fork-Join)

 contains a Fork and a Join control element, where

 the fork can have an arbitrary number of outputs (branches).

 branches can be executed concurrently,

 all branches lead to the join node, and

 parallel execution ends, when all branches terminate.

Two activities are concurrent if the order of their execution is
not controlled.

 Note: we are going to work with two parallel branches.

 NOT equivalent to Decision-Merge!

44

Flow Begin / Flow End

Build

45

Definition: Flow Begin/End
Process starts with a Flow Begin control element and ends with a
Flow End element.

 The begin node is the first node of the process, with exactly
one output.

 The end node is the last node of the process with exactly one
input.

 Note: we do not model what causes the process to start

46

Build

Hierarchy

Compile Link

t

Compile Link

Build

47

Definition: Hierarchy
Hierarchical process model:

 Instead of an atomic activity it can contain a submodel
described by a process model (hierarchical refinement).

48

Build

References / Calls

Compile Link

t

Compile Link

Build

Build

49

Build

References / Calls

Compile Link

t

Compile Link

Build

Build

Elementary task?
Actually a subprocess!

Can be embedded into the main process if the refinement is valid:
• The steps combined produce the same thing as the process
• No unhandled case on caller level

(Input/output consistency)

50

Well Structured Process

 Building from control blocks

oOne entry point, one exit

o Sequence, decision-merge and fork-join blocks, loop,
elementary activity, (empty control section)

 Analogy: structured programming

o Control structures instead of goto

 Example of a non-well-structured process

A B C

51

Well Structured Process

 Some formalisms enforce it

o eg. BPEL (business process over web services)

o eg. Structogram (Nassi-Shneiderman)

o programming languages without goto, break, etc.

while a ≠ b do

a > b

b := b - aa := a - b

return a

true false

53

Example: Coffee Making Process

54

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START

55

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START

56

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START

57

Comparison

 State machine Process

Cup placedTank filled Pod placed

Fill tank Place cup

START

Place pod

Tank empty No podNo cup
Fill LEFT
reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START

58

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT
side START

Plug in

59

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT
side START

Plug in

[not plugged in]

[plugged in]

60

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT
side START

Plug in

[not plugged in]

[plugged in]

61

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT
side START

Plug in

[not plugged in]

[plugged in]

62

Example: Coffee Making Process

Press LEFT
side START

Plug in

[not plugged in]

Prepare
LEFT side

[plugged in]

63

Example: Coffee Making Process

Press LEFT
side START

Plug in

[not plugged in]

[plugged in]

Prepare
LEFT side

64

Example: Coffee Making Process

Press LEFT
side START

[not plugged in]

[plugged in]

Prepare
LEFT side

Press RIGHT
side START

Prepare
RIGHT side

Plug in

65

Making coffee

Press LEFT
side START

[not plugged in]

[plugged in]

Prepare
LEFT side

Press RIGHT
side START

Prepare
RIGHT side

Plug in

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

66

Modeling based on different aspects

67

What happens to a car?

Assemble
Cari

Paint
Cari

Polish
Cari

68

What happens on the production line?

Assemble
Cars

Paint
Cars

Polish
Cars

Assemble
Car1

…
Assemble

Carn

69

Modeling based on different aspects

Assemble
Car1

…
Assemble

Carn

Assemble
Cari

Paint
Cari

Polish
Cari

Assemble
Cars

Paint
Cars

Polish
Cars

70

Joint View

 Includes everything but not very practical

Assemble
Car1

Paint
Car1

Polish
Car1

Assemble
Car2

Paint
Car2

Polish
Car2

Assemble
Carn

Paint
Carn

Polish
Carn

…

…

…

71

Joint View

 Includes everything but not very practical

Assemble
Car1

Paint
Car1

Polish
Car1

Assemble
Car2

Paint
Car2

Polish
Car2

Assemble
Carn

Paint
Carn

Polish
Carn

…

…

…

This dependency doesn’t come from the
process logic
(resource, physical space, etc. configuration)
Don’t mix it in the process logic…
(see future lectures: resource reservation)

72

Joint View

 2D fork-join net isn’t very practical

o Different processes for different aspects (car’s and
machine’s lifetime)

 Multiple fork-join pairs in a compact way?
 PERT chart

o Program Evaluation and Review Technique

• For analyzing execution time

• (No branching here)
3

4

1

3

3

2

73

Implementations

Control Process

Process Models

Role of the Process Modeling

Overview

Table of contents

74

Flowchart

http://xkcd.com/518/

75

Flowchart

 Flowchart / decision diagram

o Describes a train of thought for decision making

• Leads to a conclusion

o No temporal sequence

 Special case: decision tree
Describing decision points
and their order is difficult

for real problems

76

Example: Erroneous Decision Process

(Monty Python,
picture: graphjam.com)

• Inconsistent decision
points

• Non mutually exclusive
alternatives

• Decision branches don’t
cover all the possibilities..

79

Control Flow

<statement1>
<statement2>

statement2

statement1

80

Control Flow

if (<expression>)

<statement>

statement

[expression holds]

[expression fails]

81

Control Flow

if (<expression>)

<statement1>

else

<statement2>

statement1

[expression fails][expression holds]

statement2

82

Control Flow

while (<expression>)

<statement>

statement

[expression fails]

[expression holds]

83

Control Flow

do

<statement>

while (<expression>)

statement

[expression fails]

84

Control Flow - Example

while (a != b) {

if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;

85

Control Flow - Example

while (a != b) {

if (a > b) {

a = a – b;

} else {

b = b – a;

}

}

return a;

86

Control Flow - Example

while (a != b) {

if (a > b) {

a = a – b;

} else {

b = b – a;

}

}

return a

87

Control Flow - Example

if (a > b) {

a = a – b;

} else {

b = b – a;

}

[a != b]

[a == b]

return a

88

Control Flow - Example

return a

[a == b]

[a > b] [a <= b]

a = a – b b = b – a

[a != b]

89

Control Flow - Complexity

return a

[a == b]

[a > b] [a <= b]

a = a – b b = b – a

[a != b]

Cyclomatic complexity
M = E – N + 2

90

Control Flow - Recursion

int fact(int n) {

return

(n == 0) ? 1 : n * fact(n - 1);

}

91

Control Flow - Recursion
int fact(int n) {

int tmp1;

if (n == 0) {

tmp1 = 1;

} else {

int tmp2 = fact(n - 1);

tmp1 = n * tmp2;

}

return tmp1;

}

92

Control Flow - Recursion

tmp1 = 1

tmp2 = fact(n - 1)

tmp1 = n * tmp2

return tmp1

fact(n)

[n == 0] [n != 0]

94

Example: n choose k
int choose(int n, int k) {

if (k < 0 || k > n) {

return 0;

} else if (k == 0 && n == 0) {

return 1;

} else {

int x = spawn choose(n – 1, k);

int y = spawn choose(n – 1, k - 1);

sync;

return x + y;

}

}

𝑛
𝑘

= 𝑛−1
𝑘

+ 𝑛−1
𝑘−1

0
0

=1

95

Example: n choose k

choose(n, k)

return 0

return 1

x = choose(n – 1, k)

y = choose(n – 1, k - 1)

return x + y

[k < 0 || k > n]

[k == 0 || n == 0]

[else]

96

EXECUTION OF
BUSINESS PROCESSES

97

The Semantics of Processes

 The modelling perspective

 The intended execution

98

Process Execution

 Token flow

 The states of the process

99

States of an Elementary Activity

t

start of execution end of execution

T

T
under execution

T
before execution

T
completed

100

States of an Elementary Activity

t

T
before execution

T
under execution

T
completed

T
under execution

T
before execution

T
completed

start of execution end of execution

101

States of a Process

t

T1

under execution
T1

before execution
T1

completed

T1 T2

T2

before execution

T2

under execution
T2

completed

102

Background: Mathematical Model

 Allen’s interval algebra (1983)

o Used among others at testing, 13 (6 + 1 + 6) cases

James F. Allen: Maintaining knowledge about temporal intervals.
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832–843, ISSN 0001-0782

103

Háttér: matematikai modell

 Allen’s interval algebra (1983)

o Used among others at testing, 13 (6 + 1 + 6) cases

James F. Allen: Maintaining knowledge about temporal intervals.
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832–843, ISSN 0001-0782

X BEFORE y

X MEETS y

X OVERLAPS y

X STARTS y

X FINISHES y

X DURING y

X EQUALS y n intervallum:
1,1,13,409, 23917… eset

104

What Can Be Checked?

 The execution is not based on the given process

o Satisfaction of assumptions (order, independence)?

 What is the „process” behind system/execution?

oWorkflow mining

 If e.g. the execution environment is permissive

o Steps can be skipped, ….

o Are the requirements still satisfied?

 Tooling: formal methods

o (Temporal)Logics, Petri nets, model checking, etc.

