
1
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Model Verification and Validation

2

Ariane 5 Booster

 The strongest European booster

3

Ariane 5 Booster

 On 4 June 1996 it destroyed itself 37 seconds after
launch

o Four satellites were destroyed

o Loss of $370 million

4

Ariane 5 Booster

 On 4 June 1996 it destroyed itself 37 seconds after
launch

o Four satellites were destroyed

o Loss of $370 million

 (One of the) world’s most expensive software fault

o Immediate reason:

Unsuccessful conversion between 64 bit and 16 bit
number

o Underlying reason:

Modules were never tested together

5

Example: Esterel SCADE

Specification

Models

Verification

Generation

Avionics,
Automotive, Critical
Embedded Systems

Specification

Models

Verification

Generation

Model
checking

6

CONTENT

Static Analysis Testing Formal VerificationBasic Concepts

7

Motivation: Model Life Cycle

Model
Development

Requirements,
specification

Design

Implementation

Testing

Maintenance

Software
Development

Requirements,
specification

Initial models

Detailed models

Verification

Maintenance

8

Automatic Code Generation

Model
Development

Requirements,
specification

Initial models

Detailed models

Verification

Maintenance

Requirements,
specification

Design

Implementation

Testing

Maintenance

Software
Development

9

BASIC CONCEPTS

Static Analysis Testing Formal VerificationBasic Concepts

10

Models and Activities

 Synthesis:
Model conformant to
specification?

 Analysis:
Model’s behaviour?

 Control:
How can the desired state
be reached?

I O

I O?

I? O

M?

M

M

11

Correctness

 Correctness:
model/code fulfils the requirements

o Functional Correctness:
satisfying the functional requirements

o Checking non-functional requirements:
see lecture on Performance modelling

 Aspects:

o Always able to complete the task

o Error-free

o No forbidden behaviour

12

Classification of Functional Requirements

 Allowed behaviour (e.g. safety):
o „Something bad is never true”

o What state can/can’t be the current state of the sytem

o What behaviour is prohibited

o Universal requirements
• They must always be true

 Expected behaviour (e.g. liveness):
o „Something good eventually happens”

o What states should be able to be reached

o What functions should the system be capable of

o Existential requirements
• Possibility of fulfilling, potential reachability

13

Classification of Functional Requirements

 Allowed behaviour (e.g. safety):
o „Something bad is never true”

o What state can/can’t be the current state of the sytem

o What behaviour is prohibited

o Universal requirements
• They must always be true

 Expected behaviour (e.g. liveness):
o „Something good eventually happens”

o What states should be able to be reached

o What functions should the system be capable of

o Existential requirements
• Possibility of fulfilling, potential reachability

„The light should be
able to switch to

green.”

„Traffic lights of
crossroads can never

all be green at the
same time.”

14

Deadlock

o e.g. Processes waiting for each other

Deadlock: A subset of the state space, which cannot be
left by the system without external assistance.

15

Deadlock

o e.g. Processes waiting for each other

Deadlock: A set of states, which cannot be left by the
system without external assistance.

? ?

At crossroads – unless road signs or traffic rules tell otherwise – the
vehicle coming from the right has right of way [priority].

(Road Traffic Act I, 1988)

16

Unlocking the Deadlock

 Olyan állapot, amelyből a rendszer külső
beavatkozás nélkül képtelen továbblépni.

o Pl. egymásra várakozó folyamatok miatt

If 4 cars arrive to the crossroad at the same time, then one of them
has to disclaim his priority, and let the others go. Otherwise they will
stay there forever according to Highway code.

17

Unlocking the Deadlock

 Olyan állapot, amelyből a rendszer külső
beavatkozás nélkül képtelen továbblépni.

o Pl. egymásra várakozó folyamatok miatt

If 4 cars arrive to the crossroad at the same time, then one of them
has to disclaim his priority, and let the others go. Otherwise they will
stay there forever according to Highway code.

After
you!

After
you!

After
you!

After
you!

18

Another Deadlock

 Olyan állapot, amelyből a rendszer külső
beavatkozás nélkül képtelen továbblépni.

o Pl. egymásra várakozó folyamatok miatt

If 4 cars arrive to the crossroad at the same time, then one of them
has to disclaim his priority, and let the others go. Otherwise they will
stay there forever according to Highway code.

Unlocking the deadlock because of unlocking:
• Asymmetric algorithms
• Algorithms with randomization

• See the backoff algorithm at Ethernet networks

19

Infinite Loop (livelock)

 Like deadlock, but for a subset of the state space:
the system can only step out of it by external assistance
o e.g. result of unlocking the deadlock

o e.g. the Google car with the fixie

…

…

…

…? ?

Deadlock: Another subset of the state space, which
cannot be left by the system without external assistance.

20

Deadlock

 Common design mistake at parallel systems

o Often it is difficult to avoid or unlock it

• The solution believed to be good can also cause problems

o Difficult to test, may
seem random

o "Multi-core CPU crisis"

 Examples

o Two processes have to exchange messages but both
are waiting for the other’s message

o Both of two processes need two of the resources to
continue, but each have reserved one

21

Model Verification and Validation

Verfication and
validation

Model Requirement

DFN of the
communication
of the bank and

the travel agency

„No message is
lost and sooner

or later the
communication

ends.”

22

Types of Analysis

 By goal:
o Verification:

Am I building the system the right way?
• Is the implementation conformant to the specification?

o Validation:

Am I building the right system?
• Does the system satisfy the user requirements?

 By method:
o Static analysis

o Dynamic analysis
• „spot check” (testing, simulation)

• Complete (model checking)

Basic Concepts

Static Analysis

Testing

Formal Verification

23

STATIC ANALYSIS

Static Analysis Testing Formal VerificationBasic Concepts

24

Decision and Join

 Is the following model correct?

Card
payment

Cash
register

Destock
Method of
payment?

Credit card

Cash

25

Decision and Join

 Is the following model correct?

Cash
register

Destock
Method of
payment?

Credit card

Cash

Card
payment

?

 Join: only continues when tokens arrived from all
inputs

 DEADLOCK

26

Fork and Merge

Logging

Destock

Transaction

 Is the following model correct?

27

Fork and Merge

Logging

Destock

Transaction

 Is the following model correct?

 Merge: let tokens pass through from any branch

o Doesn’t synchronize

 „Destock” is executed twice

28

Loop 1.

 Is the following model correct?

Countdown
Start

launching

Zero?

Yes

No

29

Loop 1.

 Is the following model correct?

Countdown
Start

launching

Zero?

Yes

No
?

 Join: only continues when tokens arrived from all
inputs

 DEADLOCK

30

Loop 2.

Frame
rendering

Post-
processing

 Is the following model correct?

31

Loop 2.

Frame
rendering

Post-
processing

 Is the following model correct?

 Join: only continues when tokens arrived from all
inputs

 DEADLOCK

?

32

Loop 3.

Frame
rendering

Post-
processing

 Is the following model correct?

33

Loop 3.

Frame
rendering

Post-
processing

 Is the following model correct?

34

Loop 3.

Frame
rendering

Post-
processing

 Is the following model correct?

 New frame in every iteration

o Postprocessing each (many times – how many?)

Borderline case…

35

Loop 3.

Login Session

 Is the following model correct?

oWhat about now?

 New login after every login…

o…and a session…?

 Faulty implementation „produces” threads

36

Terminating Node

Publish
points

Submit
grades

 Is the following model correct?

37

Terminating Node

Publish
points

Submit
grades

 Is the following model correct?

38

Terminating Node

Publish
points

Submit
grades

 Is the following model correct?

 Terminating node: stops the complete process
immediately

 The other activity won’t be executed

39

Well Structured Process Models

 Lecture: These problems can be avoided by using
well-structured processes

Allowed patterns:

Subprocess

Subprocess

Subprocess

Subprocess

Activity

Empty
process

Atomic
activity

Cycle

Decision

Subprocess Subprocess

Sequence

Subprocess

Subprocess

Parallelism

40

Static Analysis: Structural Correctness

 Structural analysis: examining model graph

 Looking for error-patterns during editing

 Unreachable state, for instance:

 Further analysis: missing initial state, deadlock,
variable assignment, etc.

Node is not reachable.

41

Static Analysis of Data Flow

 A process multiplies two numbers

o Derived requirement:

• „If at least one of them is even, the result will also be.”

o Can be traced through the code

• „Executing in mind”

 Symbolic execution

o Instead of concrete values of variables, the program is
executed with sets of possible values

o Interesting inputs can be defined

• E.g. Internal branches

By what inputs can the branches be reached?

42

Static Analysis: Syntax Analysis

 Syntax analysis: modelling tools connect logically
cascading model elements

 Syntax-driven editor

o Fault during editing Couldn’t resolve reference

o Advanced editor (offering possibilities for instance)

 Code and diagram
together

 Programming: incorrect during editing
Modelling: correct during editing

Declaration in interface:
var clock: integer = 60

Usage in model:
after 1 s [clock>0]/ clock -= 1

43

Static Analysis: Supporting Design Rules

 Supporting design guidelines (design patterns):
Further rules can be added to the model

o Always and Oncycle: Events firing on each clock tick

o Arbitrary frequence Typically a malfunction

Using Always and Oncycle events are
prohibited when using Yakindu.

44

TESTING

Static Analysis Testing Formal VerificationBasic Concepts

45

Model Testing

Test executor

SUT

Test input Test result

System
Under

Test

46

Model Testing

SUT

Test input

Oracle

Real output

 Oracle:
producing and comparing expected results

Test result

47

Model Testing

SUT

=

Reference
Expected output

 Reference:
expected output based on test input

Test input

Real output

Test result

48

Model Testing Example: State Machine

SUT
Test input

=

TesztesetekTest cases

Input event sequence

Expected actions, events

Real output

Test result

Expected output

49

Examined automaton

Inputs

Reading expected output

Model Testing Example: Yakindu State Machine

Example test case: In Settings menu, the initial time
can be set between 1 and 3 minutes on a 5 seconds
scale.

50

Examined automaton

Inputs

Reading expected output

Model Testing Example: Yakindu State Machine

Example test case: In Settings menu, the initial time
can be set between 1 and 3 minutes on a 5 seconds
scale. + button increases by 5

seconds

…

01:00


01:05


01:10 02:50 02:55 03:00…
   

03:00


03:05


Initially 1 minute is
displayed

No further
increase

Incorrect output
Warn the developer

51

Self Testing (Monitor)

SUT
Input Output

C
h

ec
ki

n
g

in
p

u
ts

C
re

d
ib

ili
ty

te
st

Input
invariants

Output
invariants

Describing
accepted/expected

inputs (precondition)

 Invariant property:
must be continuously true

52

Self Testing (Monitor)

SUT
Input Output

C
h

ec
ki

n
g

in
p

u
ts

C
re

d
ib

ili
ty

te
st

Input
invariants

Output
invariants

 Invariant property:
must be continuously true

Describing
acceptable/promised

outputs (postcondition)

53

Self Testing vs. External Testing

SUT
Input Output

C
h

ec
ki

n
g

in
p

u
ts

C
re

d
ib

ili
ty

te
st

Input
invariants

Output
invariants

Test Executor

SUT

Test input Test result

Single, self
testing

component

Separate
testing
system

54

Self Testing Program

Pre-condition: discriminant is non-
negative

void Roots(float a, b, c,
float &x1, &x2)

{
float d = sqrt(b*b-4*a*c);

x1 = (-b + d)/(2*a);
x2 = (-b – d)/(2*a);

}

Post-condition: both solutions are zero

void RootsMonitor(float a, b, c,
float &x1, &x2)

{
//precondition
float D = b2-4ac;
if (D < 0)

throw "Invalid input!";

// execution
Roots(a, b, c, x1, x2);

// postcondition
assert(ax1

2+bx1+c == 0 &&
ax2

2+bx2+c == 0);
}

55

Self Testing Program

Precondition: discriminant is non-negative

void Roots(float a, b, c,
float &x1, &x2)

{
float d = sqrt(b*b-4*a*c);

x1 = (-b + d)/(2*a);
x2 = (-b – d)/(2*a);

}

Postcondition: both sollutions are zero

void RootsMonitor(float a, b, c,
float &x1, &x2)

{
//precondition
float D = b2-4ac;
if (D < 0)

throw "Invalid input!";

// execution
Roots(a, b, c, x1, x2);

// postcondition
assert(ax1

2+bx1+c == 0 &&
ax2

2+bx2+c == 0);
}

Exception:
Unexpected situation,
differing from normal.

Handling is implemented
at some other part.

Reason: misuse.

Assert (presumption):
Erroneous state, that the code

isn’t prepared to handle.

Reason: incorrect
implementation or runtime error.

56

Monitoring in Yakindu

 SUT and monitor regions running paralelly

o Good case:
• Valid input

• Correct operation

In the homework, one can switch
between setting and playing.

SUT

57

Monitoring in Yakindu

 SUT and monitor regions running concurrently

o Good case:
• Valid input

• Correct operation

SUT

o Bad case:
• Invalid input  InvalidInput

• Incorrect output  Error

58

o Bad case:
• Invalid input  InvalidInput

• Incorrect output  Error

 SUT and monitor regions running parallelly

o Good case:
• Valid input

• Correct operation

Monitoring in Yakindu

SUT

Exception

Assert

59

Model Testing

 Executing the model: Simulation

o Analysing behaviour for given inputs

 Test case:

1. Test input

• e.g. a mid-range value and two corner cases

2. Expected output

What inputs should be tested?

60

Coverage

 Coverage is the ratio of concerned model parts
during the execution of a given test suite.

o State coverage (in state machines):

reached states

all states
o Transition coverage (in state machine):

fired transitions

all transitions
o Command coverage (in control flow):

executed activities

all activities

61

Example: Cloud-based Data Storage

„We are modelling cloud
based data storage with
only one file. The client can
write the file, synchronize
with the server and discard
local modifications.
Depending on the version
of the replica on the server
synchronizing may cause
conflict if others have
modified the file.”

Synchronous

Dirty

Conflict

write
discard

discard

write

[Server.Synchronous]
synchronize

[Server.Updated]
synchronize

62

Example: Cloud-based Data Storage

Synchronous

Dirty

Conflict

write
discard

discard

write

[Server.Synchronous]
synchronize

[Server.Updated]
synchronize

1. Test case:

a) write

b) discard

2. Test case:

a) write

b) Server = Updated

c) synchronize

d) discard

Test suite coverage:
State coverage: 66%

Transition coverage: 33%

Test suite (1.+2.) coverage:
State coverage: 100%

Transition coverage: 66%

3 states
6 transitions

63

Example: Cloud-based Data Storage

Synchronous

Dirty

Conflict

write
discard

discard

write

[Server.Synchronous]
synchronize

[Server.Updated]
synchronize

3 states
6 transitions 3. Test case:

a) write

b) Server = Updated

c) synchronize

d) write

e) Server = Synchronous

f) synchronize

Test suite (1.+2.+3.) coverage:
State coverage: 100%

Transition coverage: 100%

64

Coverage

After first test case:
State coverage: 2/3=66%
Transition coverage: 2/6=33%

After second test case:
State coverage: 3/3=100%
Transition coverage: 4/6=66%

After third test case:
State coverage: 3/3=100%
Transition coverage: 6/6=100%

65

Using Tested Models

 Software testing:

o Reusing (100% coverage) test suite

o Covering test inputs (input)

o Outputs by model (expected output)

 Monitoring: simulating the model while running
the software

o Same inputs for the model and the program

o Comparing outputs  fault detection

 Log analysis:

o Running the monitor over logged input/outputs

66

Using Tested Models

 Software testing:

o Reusing (100% coverage) test suite

o Covering test inputs (input)

o Outputs by model (expected output)

 Monitoring: simulating the model while running
the software

o Same inputs for the model and the program

o Comparing outputs  fault detection

 Log analysis:

o Running the monitor over logged input/outputs

Before
running

While
running

After
running

67

Test Documentation

 Test cases and test results should be documented!
oWhat does it test?

o Based on what requirement?

oWhat is the input?

oWhat outputs are expected?

o Has it been executed?

o If so, was it succesful?

 Traceability:
o Exploring untested code lines and unsatisfied

requirements

o Recording and tracing back the test results

Te
st

 s
p

ec
if

ic
at

io
n

Te
st

 r
ep

o
rt

68

Types, Phases of Tests

 Module testing:
separating and testing a component

 Integration test:
testing multiple components together

 System test:
testing the complete system together

 Regression test:
(selective) re-testing after modifications

Module/Unit Test

Integration Test

System Test

Regression Test

69

FORMAL VERIFICATION

Static Analysis Testing Formal VerificationBasic Concepts

70

Formal Verification

 Formal verification: proving correctness of
models/programs with mathematical methods

o For more information see: Formal Methods masters course

 Tools:

oModel checking

• Exhaustive examination of possible behaviours

o Automatic proof of correctness

• Automatic theorem proving based on axiom systems

o Conformance testing

• Checking compatibility between models

71

Model Checking

 Model checking: exhaustive (complete) analysis of
possible behaviour of the model, based on given
requirements

o Search for erroneous operation

 Counter example

Testing Model Checking

Small set of possible cases Complete

Checks expected outputs Checks a sequence of states

Requires less computation Requires more computation

Does not prove correctness Proves formally

