System Modelling

Foundations

- What is a model?
 - Abstraction, neglecting irrelevant parts/aspects
 - o Existing systems, planned systems
 - o Substitution for the modelled system
 - o Reality vs. model vs. diagram
- "Closed world" vs. "open world" assumption
- Models and modelling languages
 - Syntax (abstract and concrete)
 - Semantics
 - Conditions, constraints (well-formedness)
 - Modelling, metamodelling
- Goal/Purpose of modelling
- System, context, interface
 - Black box modelling, white box modelling
 - o Components, interactions
- Model refinement, model abstraction
 - o Refinement of the "boxes", refinement of value sets, ...
 - Refinement: adding more details
 - o Abstraction: Generalization, reducing model "size"

Structural Modelling

- Structural models
 - o "part of" relations, decomposition
 - Subsystems, components
 - Parts, properties, relationships
- Common models, views of a model
- Structural decomposition
 - o Multi-level decomposition
 - o Physical decomposition, logical decomposition
 - Correctness of a decomposition
- "Top-down" and "bottom-up" approaches
- Graph representation of structural models
 - Containment relation → tree graphs
 - o Graph operations (filtering on edge labels, ...)
- Property modelling
 - Property as a function
 - Tabular representation

- Filtering and projection
 - Queries on data structures
- Modelling of types
 - Types and attributes
 - o Type hierarchies (inheritance, specialization, abstraction)
 - Metamodel, instance model
 - Type nodes, edge nodes
 - Consistent modelling

State Based Modelling

- Behavioural models
 - What are the properties of the system now, and how do they "change"?
 - Behaviour fully determined by the "past" only?
- Events
 - Event streams, event spaces, series of (instantaneous) events
- State spaces
 - Discrete states, finite state spaces, current state, state refinement/abstraction
 - Completeness, mutual exclusivity
 - Composition of state spaces
 - Direct product, state vectors
 - Projection to the components (abstraction)
 - Refinement of the composition: not all combinations can manifest
 - Refinement resulting in <u>less</u> elements
 - Decomposition of state variables
- State transitions
 - Instantaneous transitions, discrete events
 - Binary relation
 - State graphs (Complete graphs? Reachability of states?)
 - Non-determinism, (potential) conflict of transitions
 - Labelling transitions with events
 - Pre-conditions, post-conditions, guards
 - Spontaneous transitions
 - Reading from multiple input channels, writing to multiple output channels
 - Unspecified inputs (3 approaches)
- State machine extensions
 - State hierarchy
 - Sub-states, super states (emphasizing common properties)
 - State configurations
 - Orthogonality
 - Regions, "parallel execution"
 - State configurations
 - Guards referring to states of the other regions
 - Variables
 - E.g. counters (as natural numbers? as integers?)

- Separate regions (With their own states. Can be referred to in guards.)
- Pseudo states
 - Syntactically states, but semantically not
- Products
 - (Direct product of state spaces)
 - Asynchronous product of state machines
 - Synchronous product of state machines
 - Mixed product of state machines
 - Rendezvous events

Process Modelling

- Behavioural models
 - O What "does" the system with its working item?
 - As a series of activities
 - control flow
 - data flow
- The role of process modelling
 - o In specification/design/implementation/verification/documentation
- Modelling aspects
 - Goal/output of the process
 - Activities, their order/dependencies
 - o Decision points
 - o Pools, roles, resources
- Uses of process models
 - o Modelling administrative (e.g. banking) processes
 - Modelling manufacturing processes
 - Modelling business processes
 - Modelling operation of (e.g. IT) systems
 - Specifying protocols
 - Designing executable processes
 - Designing data processing/analysing processes
- Basic concepts
 - Process description languages
 - Process models (templates)
 - Control flow, data flow, decision points
 - Data structures
 - Steps to execute (as activities)
 - Timings, resources, roles
 - Process instances
- Basic concepts of process modelling languages
 - Elementary activity
 - Sequence
 - Decision-Merge
 - Guards, branches, control elements

- Loop
- Parallel execution / Fork-Join
 - Unspecified order
- o Flow begin, flow end
- Hierarchy
- References / Calls
- Well-structured processes
- Separation of control logic and resources
- Control flow (of programs)
 - Cyclomatic complexity of code
 - Recursion
- Process Execution
 - States of an elementary activity
 - States of a process
 - o Mathematical background: Allen's interval algebra
 - Workflow mining
- Business process modelling
 - o BPMN, UML AD, ...
 - States of an activity
 - o Events, timers, ...
- Execution of process models
 - Workflow engines

Model V&V

- Model life cycle
 - Comparison to SW development life cycle
 - o Life cycle of model-based SW development
- Model and activities
 - Synthesis, Analysis, Control
- Correctness (of models/implementations)
 - o Fulfilment of the requirements
 - Functional requirements
 - Allowed behaviour, expected behaviour
 - Non-functional requirements
 - o Deadlock, livelock
- Types of the analysis
 - o Verification, Validation
 - Static analysis
 - Analysis of the structure of the model
 - Well-structured process models, well-structured code
 - Structural correctness
 - Analysis of the data flow
 - Symbolic execution
 - Syntax analysis
 - Support of design rules/patterns

- Dynamic analysis
 - Spot checking: testing, simulation
 - Test executor, test oracle, reference
 - Self testing (monitoring)
 - o Exceptions, assertions
 - Coverages of test suites
 - o State coverage, transition coverage
 - O Statement coverage, branch coverage, path coverage, ...
 - Usage of the tested models
 - SW testing, monitoring, log analysis
 - Test documentation
 - o Test specification, test report
 - Phases of testing
 - Module/unit testing, integration test, system test, regression
 - Complete checking: Formal verification
 - Proving correctness by mathematical methods
 - Model checking
 - o Exhaustive analysis of possible behaviour
 - Searching for counter examples
 - Automatic proof of correctness
 - Conformance testing