System Modelling (BMEVIMIAAQ0), Spring Semester 2017 S

3rd Seminar — Process models, cooperating behaviour models —
Solutions

1 Modelling a complex system

We are modelling a cloud-based data storage (e.g. Dropbox, Google Drive, Tresorit) with only one file.
Both the server and the client (e.g. a laptop) has a replica of the file, initially with identical contents.
Modifications of the file are transmitted via synchronization. A conflict occurs if both instances are
modified before synchronization and the user has to resolve this conflict on the client.

The file can become modified locally on the client or on the server (e.g. due to the work of another
client). The client and server may synchronize their content due to a user command or spontaneously
from time to time. At that point the changes (if there is any) are transmitted to the other file and the
replicas became identical again. However, if both files have been modified independently since the last
synchronization, then a conflict occurs. In this case the client compares the local and remote versions
of the file and the user must resolve the conflict.

a. Model the (partial) behaviour of the laptop client with a state machine. Initially the client is
in identical state (the local file is identical to the one on the server at the time of the last
synchronization), but the write input causes it to transition to dirty state (and it stays there
after further write inputs). As a result of a revert input, it moves from any state to identical
state.

Solution

Custom notations:
e identical state: in-sync
e synchronize event: sync

Client revert
—insyne)

{revert, write}

write

write

revert

b. The possible states of the server (regarding only the synchronization with the client) include
identical and updated. A different user (or the same user using another client, e.g., a smart
phone) with write permissions might update the replica on the server.

Solution

Here the interesting part is the spontaneous transition (with an empty trigger/input event). This
is due to our decision to model only one client. This empty input event is essentially the sync
event of other clients.

System Modelling (BMEVIMIAAQ0), Spring Semester 2017

Server
—Csyne)

c. If the server is in identical state, then as a result of synchronize input the client uploads the
local modifications (if there is any) to the server and moves to identical state. The server also
receives the synchronize input. Where do the two automata cooperate?

Solution

We put the guard condition [S.in-sync] on the two new transitions of the Client. Interesting to
note is that this depends on the actual state of the other state machine — so this is a cooperation.
This is an abstraction of reality, since in real life we need messages between the client and server
to determine the other’s state (or to exchange file versions).

Client

{revert, write,
sync} sync
[S.in-sync]

write

sync}

Server

sync

@

sync

d. If the server’s current state is updated, then, as a result of synchronize input given on the client,
the server transitions to identical state. The client either stays in identical state, or transitions
from dirty to conflict state. What does this mean? What should happen in the conflict state?
Where do the two automata cooperate?

Solution

This means that the two automata step together, that is the sync input event affects both

automata!

(Note: in this case we say that the product automaton is the mized product of the two individual
automata. They step mainly asynchronously, but sometimes they perform synchronized steps,
thus the name mixed product.)
We put the guard condition [S.updated] on the two new transitions of the Client. Notice that
there are two transition originating from the Client.in-sync state and their guard conditions
are the complements of each other (since the Server has only two states): [S.in-sync] and
[S.updated]. Accordingly these transition can be merged into a single transition, one without
a guard condition (this isn’t denoted on the figure).
It’s the Client’s responsibility to resolve the conflict when it detects one. The Server goes back
to in-sync state since it hasn’t received a newer version since the last synchronization. Possible
ways to resolve the conflict state:

e revert — in-sync
e write — dirty
e sync — conflict

System Modelling (BMEVIMIAAQ0), Spring Semester 2017

sync
[S.upd

{revert, write,
sync}

revert

sync
[S.updated]

sync

Server

sync
~(msyne)

sync

e. Sometimes the client synchronizes with the server by itself, without any user input. What does

it mean?

Where do the two automata cooperate?

Solution
It’s the same as before, but instead of an outer event (sync) we have inner events (lets call
these pull and push). Optional modification: ensure that automatic synchronization never causes

conflict.

sync
[S.upd

{revert, write,
sync}

revert

revert

sync
[S.updated]

sync

sync}

{push,
pull}

f. Create the product state space of the client-server system based on the two automata in the
mixed product.
Solution
The states of the composed state machine are described by a vector of two elements
((Client, Cerver)). Beginning with the initial state ((in-sync,in-sync)), we can record in a ta-
ble for for each possible events, what will be the next state. We add a new row to the table
for each new “next states”. In case of a rendezvous event the composed state machine will only
make a step, if both original automata could make a step for that event in their corresponding
states. (In the table, we have showed loop transitions with an x.)

System Modelling (BMEVIMIAAQ0), Spring Semester 2017

asynchronous (private) || common (shared) || rendezvous || spontaneous
events events events transitions
revert ‘ write sync push ‘ pull —
(in-sync, in-sync) * (d, 1) * * * (i, u)
(dirty, in-sync) (i,1) * (i,1) (i,1) * (d, u)
(in-sync, updated) * (d, u) (i,1) * (i,1) *
(dirty, updated) (i,u) * (c, 1) * * *
(conflict, in-sync) | (i,i) (d, i) * * * (c,u)
(conflict, updated) | (i,u) (d, u) (c, 1) * * *

Please notice that the red transitions in the figure are shown to be spontaneous, instead of having
a rendezvous trigger event. That is, because the rendezvous events represent some inner events,
and they have names only two show the cohesive spontaneous transitions in the different state
machines. In the single composed state machine we do not need these names to describe the
synchronized spontaneous transition. (For the sake of clarity loop transitions are not shown on

the figure.)

g. (Bonus task) The server and client can check each other’s state directly in this model and the
synchronization also happens instantaneously. However, the communication between the client
and the server is implemented with messages in a real life distributed system. Some time elapses
between sending the message and receiving an answer. How can we refine the model in order to
incorporate this behaviour?

Solution
Homework.

System Modelling (BMEVIMIAAQ0), Spring Semester 2017 eNes

2 Process execution
We observed every step during the execution of a process. We detected the following event sequence:

Process started, P started, P completed, () started, R started, () completed, R completed,
Process completed.

a (R} b __@_c).,@.)@_d@__
O30 80 »I bf O el___@___:l@ .{)@_ (@

Which ones can be valid models of the observed system from the business process models a, b, c, d?
Solution

Assume that every activity takes some time to execute (i.e. they are not atomic). The business process
models b and ¢ are valid models of the system. In case of models a and d the completion of activity
Q must precede the start of activity R. This constraint is violated by the observed event sequence.

System Modelling (BMEVIMIAAQ0), Spring Semester 2017 eNes

3 Control flow based on source code

Consider the following function written in the C programming language.

if (n <=
retur
} else i
retur
} else {
unsig
unsig
retur

unsigned long long f(int n)

0) {

n 0;

f (n==1) {
n 1;

f(n - 1);
f(n - 2);

ned long long a
ned long long b
n a + b;

a. What is the control flow defined by the function?
Solution
We denote the recursive call with a “call” element (there is an arrow in the corner of the box).

Fibonacci(n)

[n<0] /|‘| return 0 >©

;% return 1

Fibonacci(n-1) Fibonacci(n-2) return a+b
-» -»

b. Check whether the process is well-structured or not!
Solution
We check whether every block is well-structured starting from inside (with the individual activ-

ities)

and heading outwards (towards the whole process):

(An empty activity is a well-structured block.)

An activity with one input and one output is a well-structured block, thus every activity in
the process is well-structured. (This can be stated conditionally only, depending on whether
the referenced processes are well-structured.)

The sequence of three well-structured blocks (single activities) is a well-structured block.
Between the inner decision node (with the conditions n == 1 and else) and its merge node
pair every path contains a well-structured block, thus the inner decision-merge node pair
as a block is also well-structured.

Between the outer decision node (with the conditions n <= 0 and else) and its merge node
pair every path contains a well-structured block, thus the outer decision-merge node pair
as a block is also well-structured.

Between the only start and the only end node there is a well-structured block, thus the
whole process is well-structured.

c. Identify the data dependencies (data flow) between the activities!

Solu

tion

There are data flows (denoted as dashed arrows in the figure) from the two recursive call to the

retur

ned sum of previous results. The point is that the result of the first recursive call is not

needed to make the second recursive call.
d. If the programming language or the runtime environment allows it, where can we parallelize the

program?

System Modelling (BMEVIMIAAQ0), Spring Semester 2017 eNes

Solution
Based on the solution in task [c.] the location of parallelization is trivial: the two recursive calls
can be made in parallel.

e. (Bonus task) What ensures the termination of the function?
Solution
The value of variable n is decremented with every recursive call. Accordingly, the condition n <= 0
(or n == 1) will hold sooner or later, thus the process will take the return path.

4 Control flow based on textual specification

The code repository (e.g. Git) of a big software foundation is home to the development of numerous
open-source software. In addition to the reliable internal developers, outsiders can also send bugfixes or
newly implemented features. It must be ensured that the published software only contains legitimately
(e.g. with the consent of the employer) contributed source code.

a. If a developer would like to contribute to a project he or she must take some steps based on his
or her status. Internal developers can write directly to the section of the code repository reserved
for the specific project. Outsiders first have to submit their code to code review, after which an
internal developer has to inspect it, and then either reject or approve it. If the code contributed
by the outsider is sufficiently short (e.g. a small bugfix), then he or she only has to make a short
statement of contribution in order to merge his or her code into the repository.

In case of large outsider contributions (e.g. integrating a completely new module) the merging
process is different. After the insider approval, the legal department of the foundation clarifies
the legal status of intellectual property of the modifications via a dedicated administrative pro-
ceeding. Only after the successful closure of this process may the internal developer merge the
code. Here, they make an exception in the case of freshly started projects, still before their first
official release: merging the approved code into the repository does not need to wait until this
legal proceeding is done. Create a process model based on these activities and constraints.
Solution

Process of contribution

[insider] (]
Direct write

[rejected]

[small code]

Statement of contrin Merging
Legal proceeding H Merging

Legal proceeding

b. The development of a software project involves repeatedly modifying the source code, until the
project management decides that the software is stable enough for an official release. At this
point they publish a new stable version of the software, then it’s the developers’ turn again, and
so on. Create a process model based on these activities.

[fresh]

System Modelling (BMEVIMIAAQ0), Spring Semester 2017 eNes

Solution

Modifications during a project
[not stable]

Modification Publishing
release

By Modification we mean the action when developers create/modify code and submit it.
Notice that the model focuses only on the life cycle of the project and doesn’t contain the
participants/actors (denoted in the textual specification).

c. (Bonus task) Check whether the processes are well-structured or not!
Solution
Use the same technique as in exercise [3] The first process is well-structured. The second is
not, since there is no end node. (The activities and the loops of the second process build a
well-structured block, but the end node of the process is missing to make the whole process
well-structured.)

d. (Bonus task) What is the relationship between the process models designed in the previous
sub-tasks?
Solution
They show the life path of two different things in the same system. There can be weird overlaps
in the modelled processes, e.g., code review lasting through a release cycle. But there is no direct
relation between the two models.

	Modelling a complex system
	Process execution
	Control flow based on source code
	Control flow based on textual specification

