
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Component Design

Systems Engineering BSc Course

2

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

3

Learning Objectives

Structural modeling

•Understand the basic notions of structural modeling in systems engineering
•Understand the role and major challenges of designing functional architecture
•Understand top-down and bottom-up approaches and when to use them

Blocks as reusable components

• Identify the functional components

• Identify the hierarchical relations between components

• Capture components using the SysML language

• Traceability of functional components

• Modeling component variants and specific instances

Internal structure of blocks

• Identify the communication aspects between components

• Understand the concepts of standard ports and flow ports

4

Structural Modeling Basics
(As you may recall from the System Modeling course…)

 A Structural Model is concerned with:
owhich elements form the system,

o how they are connected/related to each other,
• especially part-whole relationships (not necessarily physical)

o and the properties these elements have.

 Examples from information technology
o Data structures

o SW components, microservices

o Network structure

o SW components running on HW platform

6

Structural Modeling Basics

(As you may recall from the System Modeling course…)

 A composite (sub)system contains elements…

o ...arranged in a specific way…

o …to attain a goal…

o …that the individual parts cannot satisfy on their own

 Engineering processes that build structural models

o Composition: building a complex solution from an
appropriate arrangement of simpler elements

o Decomposition or factoring: breaking up a complex
problem or system into simpler parts

7

Top-down and bottom-up design
 Top-down: using decomposition
 When designing a subsystem, its goal is already
known

 There are no working parts during development

 Problems, needs of subsystems revealed late

 Bottom-up: using composition
 Subsystems can be tested one-by-one

 There are always some working parts during
development

 Exact roles of the subsystems are revealed late

 (Not only in structural modeling…)

 Meet-in-the-middle approach

 Iterative approaches

System

Subsystems

Subsytems of subsystems

System

Subsystems

Subsytems of subsystems

8

SW versus HW Modeling

Functional
model

Platform
model

Requirements

Most common:

Top-down approach
1. High-level components

first
2. Refine them to

smaller units
3. Design connections & API

Most common:

Bottom-up approach
1. HW component library
2. Compose them into

larger components
3. Model how

they are connected

Why top-down? Why bottom-up?

9

Top-Down
Structural Modeling

Iteratively breaking down
complex problems into simpler ones

10

Graphical User Interface

Window

Menu Main

DegradView Edit Help MC …

Degrees Radians Grads

Display

 Top-down design

11

Embedded System

Robot
vacuum cleaner

 Decomposition or factoring: breaking up a
complex problem or system into simpler parts

 Logical decomposition by function (vs. physical)

o „by function”: what service is provided?

Exploration and
navigation subsystem

Cleaner
subsystem

Monitoring
subsystem

Movement
subsystem

Sensor
subsystem … … …

12

Bottom-Up
Structural Modeling

Modeling complex systems
as composites of reusable parts

13

Composition

 Composition: building a complex solution from an
appropriate arrangement of more simple elements

 A composite (sub)system contains elements…

o ...arranged in a specific way…

o…to attain a goal…

o …that the individual parts cannot satisfy on their own

14

Software Development by Design Patterns

Abstract
Factory

Decorator

Observer

Design patterns
catalogue

Assembly
instructions

Software
Component 1

Software
Component 2

Software
Component 3

Software
System

Software components
catalogue

15

Structural Modeling Roots

 Rich history in a variety of engineering domains

o Mechanical / hydraulic / chemical / etc.

o Software and hardware systems

o Hybrid systems

16

Structural Modeling Roots

 Composition from building blocks…

o …by hand or with CAD tools (e.g. Matlab Simulink)

o Block: reusable component/subsytem
with properties and connections

17

Introduction to Block-based Design

 Composition from building blocks…

o …by hand or with CAD tools (e.g. Matlab Simulink)

o Block: reusable component/subsytem
with properties and connections

 How can we build this complex system?

o We need a structural model to guide the process

18

Assembly Instructions

19

Parts Catalogue

20

Observations on Block Usage

Blocks/parts are defined in a catalogue and
used in assembly instructions

Assembly Instructions

Parts Catalogue

21

Observations on Block Usage

Building blocks used in assembly instructions
refer to their definitions in the parts catalogue

Assembly Instructions

Parts Catalogue

22

Observations on Block Usage

The same part definition can be used multiple times
in different roles

Assembly Instructions

Parts Catalogue

23

Observations on Block Usage

Block properties may be characteristic to the…
definition (e.g. patent no.), use (e.g. orientation),

or run-time (e.g. stress)

Assembly Instructions

Parts Catalogue

24

Definition and Use

Assembly Instructions Parts Catalogue

Real System

Block
instance

Block use /
prototype / template

Block
definition / type

25

Definition and Use

Assembly Instructions Parts Catalogue

Block
instance

Block use /
prototype / template

Block
definition / type

Not AN INSTANCE of the block type
as it may be instantiated multiple times in
different ways for each bed frame

Not THE TYPE of the block instance
(may be a type - a refined specialization)
as the focus is on its ROLE within a composite

Real System

26

Observations on Block Usage

Some parts may themselves be composites,
(de)composed with separate assembly instructions

Assembly Instructions 1 Assembly Instructions 2

27

Hierarchical Definition and Use

Bed frame

RoomHouse

Bed

28

Structural Modeling in SysML

29

Structural Modeling in UML vs SysML

 UML: Software Engineering terminology

o Blocks Classes or Components

o Parts Catalogue Class Diagram, Component Diagram

o Assembly Instructions Composite Structure Diagram

 SysML: more general engineering terminology

o Blocks are called blocks

• Merging UML Class and Component features

• Extensions: flow ports, physical dimensions, etc.

o Parts Catalogue Block Definition Diagram (BDD)

o Assembly Instructions Internal Block Diagram (IBD)

30

Block Definition Diagram vs Internal Block Diagram

BDD IBD

UML Class
Diagram

Parts
catalogue

Assembly
instructions

UML
Composite
Structure
Diagram

UML
Component

Diagram

UML Object
Diagram

Composition,
decomposition

Connection,
communication

refines

provides
types

31

Top-down and bottom-up design in SysML

is only a language

Both approaches can be used
(even at the same time:

meet-in-the-middle)

System

Subsystems

Subsytems of subsystems

System

Subsystems

Subsytems of subsystems

32

Application to Functional Architecture

 Blocks are functional units (components)

o SW modules, microservices, devices, peripherals, etc.

o Part-whole relationship physical containment

o Connecting blocks physical linkage

• Dependencies

• Information flow

 Don’t confuse with…

o ANSI C functions

o Functional programming

oModeling of functional requirements

Block Definition Diagram Overview

Block Definition Diagrams

Parts Catalogue
Block Definition Diagram (BDD)

Block Definition Diagram (BDD)

34

Block nodes

 Basic structural elements

 Anything can be a block

o System, Subsystems

o Hardware

o Software

o Data

o Person

o Flowing object

 UML class with a
<<block>> stereotype

optional on a
bdd

37

 Parts - contained blocks

 References – referenced blocks

 Values – like UML attributes

 Constraints

 Ports

 Etc…

 Can be hidden on a diagram

Block node compartments
Name

(can have special characters)

parts
Compartment

38

(Reference) Association

 Represents a relationship between two blocks

o Undirected: reference property in both blocks

o Directed: reference only in one block

 End properties: role name, multiplicity, constraints

 (Not mandatory: ibd connectors may be untyped)

39

Association Block

 Association represented by a block
possibly with structural properties

40

Composition vs Generalization (often missused)

 Composition

o Container component owns
the contained components

o Container component
aggregates all features of
contained components

 Generalization

o Components share
common features besides
other properties

o Component can be used
interchangeably with
descendant components

41

Part (or Composite) Association

 Specifies a strong whole-part hierarchy

Denotation Default multiplicity

Whole end black diamond 0..1

Part end role name 1..1

42

Generalization

 Similar to OOP, UML

 Main usages

o Classification (shared role, feature)

o Specific configurations (specific name, values)

 Adds, defines, redefines properties

 Not just blocks (actors, signals, interfaces, etc.)

 Multiple inheritance is allowed

43

Generalization

Classification

Specification

44

Generalization set

 Generalization relationships, shared general end

o complete – incomplete

o overlapping – disjoint

45

Traceablity of BDDs to other artifacts

 Realizes requirements

 Allocation
(to platform)

46

Internal Block Diagram (IBD)
Overview

Assembly InstructionsInternal Block Diagrams

Internal Block Diagram (IBD)

48

Modeling Aspect

Breaks down a composite block
into part blocks that make up the whole

49

Objectives

 Describe a composite block as connected parts

o Use contained and referenced blocks defined in a bdd

o Use associations and interaction points (ports)

o Specify connectors (incl. data flow) between parts

• (Item flows can be mapped to object flows in activities)

o Specify property restrictions

 Define a template (instance specification)

o Semantics: if you instantiate the composite block…

• …you will also have the following parts…

• …arranged in a specific way

50

Blocks on IBD

 The entire ibd represents a block

 Instance specifications (templates / prototypes)

o Contained blocks
(aka. Parts)

o Referenced blocks

• (dashed border)

o Use role names

Default multiplicity: 1
51

Real System

Connectors

 Connectors between blocks (or compatible ports)

 Optionally typed by an assocication from a bdd

52

Definition / type:
association

Use / prototype / template:
connector

actual instance:
link

Nested blocks

 Nested blocks

o Block structure is expanded in an embedded ibd

o Commonly used on ibds

• (Sometimes on bdd, in the structure compartment)

 Encapsulation

o Connectors can cross block boundary

oMark the block encapsulated to forbid this

53

Qualified role names:
wheel.t.bead

Ports and Interfaces

Internal Block Diagram (IBD)

Ports

 What is a port?

o Interaction points with external entities limiting and
differentiating the possible connection types

55

REST API:

Ports

 What is a port?

o Interaction points with external entities limiting and
differentiating the possible connection types

56

REST API:

Port of a city

Reasons to Use Ports 1

 Bottom-up method

o Problem: specify how a designed component
can be used in a context

o A solution would be to realize or require an interface

o Ports take this responsibility over for better
abstraction

57

Reasons to Use Ports 2

 Top-down method

o Problem: connections are not detailed enough and
need to be refined

o Ports can be used to refine connections iteratively

58

Reasons to Use Ports 3

 Encapsulation

o Problem: connections that cross the block boundary
may reduce maintainability

o Use ports to hide the internal structure of a block

59

Reasons to Use Ports 4

 Interaction point has a special role

o Problem: the block has a physical connection point
(like AC power socket/plug) or
a distinguished behaviour

o Ports can be typed by a block with its own properties
and behaviour

60

Standard ports

 Uses interfaces for communication

o Provided interface (ball) – defines a service

o Required interface (socket) – uses a service

• A port can have multiple of required ports

61

Flow ports

 The connection is described by the flowing item(s)
e.g.: data, material, energy, etc.

 Can flow continuously, periodically or
aperiodically

Flow item can be typed by:
• Block,
• Value Type,
• Signal

62

Full and Proxy Ports

 Since SysML 1.3

 <<Full>> ports can have internal structure and
define behaviour

 <<Proxy>> ports do not own any features,
it only exposes internal features of the block

63

Using Composition instead of Full Port

64

Nested ports

 (Full) Ports can also have other ports

 Examples

o a separate port for configuring the behaviour of the
port

65

Modeling of logical and
phyiscal data

Using block definition diagrams

Value type (Data type)

 Primitives: Boolean, String, Complex, etc.

 Can have Unit and/or QuantityKind (formerly dimension)

o QuantityKind: Length, Energy, Time, etc.

o Unit: meter, inch, Watt, secundum, etc.

• Has a QuantityKind

67

Value type (Data type)

 Primitives: Boolean, String, Complex, etc.

 Can have Unit and/or QuantityKind (formerly dimension)

o QuantityKind: Length, Energy, Time, etc.

o Unit: meter, inch, Watt, secundum, etc.

• Has a QuantityKind

Equality by
comparing values

68

Data of a block

 Blocks can have attributes and/or values

 Value given by / restricted by

o Definition (bdd)

• e.g. in a specialized block (motorized =„true”)

o Use (ibd)

o Runtime

• The value may change over time

69

Signal, Block

 A signal defines a message that can be sent and
received by a block.

o Has a set of attributes

o Used by interfaces

70

Well-formedness constraints

Well-formedness constraints

 Describes additional constraints that
should be satisfied on every instance

 Structural constraint

o A turnout sensor should be connected to exactly one
zone controller

 Value constraint

o The operator should be at least 175 cm tall

o Components should have a unique name

 Behavioral constraint

o CPU should receive 12V +- 1V electricity

72

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

73

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR:
• standardized SW architecture
of the automotive industry

• now supported by modern modeling tools
Design Rule/Well-formedness constraint:
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge:
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly evolve by designers

74

SysML Constraints

 Different semantics can be used

o plain english vs formal languages (OCL, Javascript, etc.)

o formal language can be used for automatic validation

 Can be defined as a separate block with
<<constraint>> stereotype

75

SysML Constraints

 Different semantics can be used

o plain english vs formal languages (OCL, Javascript, etc.)

o formal language can be used for automatic validation

 Can be defined as a separate block with
<<constraint>> stereotype

76

Don’t confuse with
SysML Parametrics Diagram!
• Constraints are given

by the designers
• Parametrics diagram considers

the behaviour of nature
(will cover later)

OCL: an OMG Standard

 Object Constraint Language

 Declarative language for defining constraints

 Unique name constraint defined by OCL:
o context Component inv:

Component.allInstances()->

forAll(c1, c2 |

c1 <> c2 implies c1.name <> c2.name)

77

VIATRA

 VIATRA is an open source Eclipse project

o Affiliated with the research group

 VIATRA Query Language

o Graph pattern matching

o Can evaluate queries incrementally upon changes

 Unique name constraint defined by VQL
o pattern nameCollision(c1, c2){

Component.name(c1,name1);

Component.name(c2,name2);

c1 != c2;

name1 == name2;}

78

Profiles

for extending UML/SysML

UML Profiles

 Profiles can be used to extend the UML/SysML
language.

 Examples

o SysML is defined as a profile on a subset of UML.

o SYSMOD (a methodology for SysML) also defines a
profile for SysML

o MARTE (which is an OMG standard) profile is used for
modeling real-time and embedded applications.

o Tools usually support the creation of custom profiles.

80

Defining a Profile

81

Definition of
a stereotype

Stereotypes can
have attributes,
relations, etc.

Stereotype
extends a
metaclass

Using a Profile

 A profile should be applied to the project to use

82

Summary

83

