
Modeling physical properties

Controller, plant and environment model
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Platform-based systems design



Learning Objectives

Modeling physical parameters and constraints

•Include physical properties in a model
•Include rules constraining physical properties
•Capture properties and constraints using the SysML language

Joint analysis of the system and the environment

• Modeling the controller, the plant, and the environment

• Capture both continuous-time and discrete time properties

• Identify the connection between the system, the plant, and the 
controller

• Analyze system properties and execute simulations using models

• Learn the basic modeling concepts of the Modelica language



Thermal model of an aircraft
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Controller, Plant, and Environment

 Typical system control loop

 Co-designing controller and the plant would be
the ideal setting

7

Controller

Environment

Plant

Disturbance

Output
Feedback

Reference signals 
and settings

Important step of controller design: 
process identification based on measurements



Controller design

 Controller functional design using blocks

o BDD: defines element hierarchy and containment

o IBD: template for component internal structure

 Challenge: validate the design of the controller

o On-site testing and calibration can be

• Expensive (time + cost)

• Dangerous

o Instead:

• create plant model and environment model with physical
properties and

• run simulations
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Example railway system controller

 Controller aims to

o monitor the trains

o apply brakes when necessary

• too close to each other

• prevent derailment at turnouts

 Parameters influencing braking distance

o Weather conditions

o Speed

o Landscape

o … (anything else?)
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Thermal model of an aircraft
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Constraints and physical parameters
in SysML

Constraint blocks
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Constraint blocks

 Constraint: equations with parameters bound to
the properties of the system

 Constraint block: supports the definition and the
reuse of constraints. It holds

o a set of parameters and

o an equation constraining the parameters
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Assignments and equations

 An assignment in a typical programming language is a 
causal connection, where the left hand side is the 
dependent variable:

y := x + 3

 An acausal connection is like a mathematical 
equation; there is no notion of inputs/outputs. So

y = x + 3

and
y - 3 – x = 0

have the same meaning.
o If any of the variables has a new value, it enforces that the 

other variables change accordingly.
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Constraint definition
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 Composition is used to define complex constraints
from simple equations

Hierarchy 
depicted in a BDD



Parametric diagram

Specification of bindings between system parameters
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Parametric Diagram (PAR)
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Parameter bindings
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 Goal: describe the application of constraints in a 
particular context

Values bound 
together are equal

Types in a binding 
must be compatible



Applications of parametrics

 Parametric specification

o Define parametric relationships in the system structure

 Parametric analysis

o Evaluating constraints on the system parameters to 
calculate values and margins for a given context

o Checking design alternatives

o Tool support: ParaMagic plug-in for MagicDraw

 There are modeling standards with better support 
for this modeling aspect…

o…such as Modelica
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Modelica

A language for modeling and simulating 
complex physical systems
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Overview of Modelica

 Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

 The  Modelica Standard Library provides more than 1000 
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

 Implementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

 Modeling and simulation IDE: OpenModelica
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Example: modeling a simple pendulum

 Simple pendulum

 Behavior of the pendulum as a function of time:

 𝜃(𝑡)
 𝜔 𝑡

=
𝜔(𝑡)

−
𝑔

𝐿
𝜃(𝑡)
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Modelica code for simple pendulum
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model SimplePendulum

parameter Real L=2.0;

constant Real g=9.81;

Real thetha (each start = 1.0);

Real omega;

equation

der(thetha) = omega;

der(omega) = -(g/L)*thetha;

end SimplePendulum;

Model name Continuous time 
variables, constants 

Initial value

(Differential) equations



Pendulum simulation results
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Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains
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Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains
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Definition in Modelica:
equation

phi = flange_a.phi;

phi = flange_b.phi;

w = der(phi);

a = der(w);

J*a = flange_a.tau + flange_b.tau;

Definition in Modelica:
equation

auxiliary[1] = x[1]; 

for i in 1:n - 1 loop

auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]]; 

end for; 

y = pre(auxiliary[n]); 



Modelica and Simulation

 Simulating a model means to calculate the values 
of its variables at certain time instants

 Advantages

o Observing dangerous/expensive bevaviour at low cost 
with no risks

o Resolves scaling issues (size, duration)

 Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations 
(ODEs) generated from the model

o Numerical techniques
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Example plant model – train brakes

 Physical model for braking system carrying a mass

 Graphical notation in OpenModelicaEditor
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Example plant model – train brakes

 Physical model for braking system carrying a given 
mass
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Example plant model – train brakes
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model BrakeExample

Brake brake(

fn_max=1,

useSupport=false);

Mass mass1(

m=1,

s(fixed=true),

v(start=1, fixed=true));

Step step(

startTime=0.1, 

height=2);

equation

connect(mass1.flange_b, brake.flange_a);

connect(step.y, brake.f_normalized);

end BrakeExample;

Brake, Mass, and Step are inbuilt 
classes to Modelica Library

Can describe both causal 
and acausal connections 

between ports



 Plot values w.r.t. time (displacement)

Brake times and distance
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 X-Y plot (speed w.r.t. displacement)

The mass stopped 
after 1s at 0.6m

The speed reduced to 
0m/s after the mass 

moved 0.6m



Summary

 Complex system design requires modeling of
physical parameters

o SysML constraint block, parametric diagram

 Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

o Modeling language for this purpose: Modelica

 Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive
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