
Modeling physical properties

Controller, plant and environment model

1

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

Platform-based systems design

Learning Objectives

Modeling physical parameters and constraints

•Include physical properties in a model
•Include rules constraining physical properties
•Capture properties and constraints using the SysML language

Joint analysis of the system and the environment

• Modeling the controller, the plant, and the environment

• Capture both continuous-time and discrete time properties

• Identify the connection between the system, the plant, and the
controller

• Analyze system properties and execute simulations using models

• Learn the basic modeling concepts of the Modelica language

Thermal model of an aircraft

6

Copyright:

Controller, Plant, and Environment

 Typical system control loop

 Co-designing controller and the plant would be
the ideal setting

7

Controller

Environment

Plant

Disturbance

Output
Feedback

Reference signals
and settings

Important step of controller design:
process identification based on measurements

Controller design

 Controller functional design using blocks

o BDD: defines element hierarchy and containment

o IBD: template for component internal structure

 Challenge: validate the design of the controller

o On-site testing and calibration can be

• Expensive (time + cost)

• Dangerous

o Instead:

• create plant model and environment model with physical
properties and

• run simulations

8

Example railway system controller

 Controller aims to

o monitor the trains

o apply brakes when necessary

• too close to each other

• prevent derailment at turnouts

 Parameters influencing braking distance

o Weather conditions

o Speed

o Landscape

o … (anything else?)

9

Railway
system

controller

Railway
infrastructure

Environmental
conditions

Train status

Train
destination

Thermal model of an aircraft

11

Copyright:

Constraints and physical parameters
in SysML

Constraint blocks

12

Constraint blocks

 Constraint: equations with parameters bound to
the properties of the system

 Constraint block: supports the definition and the
reuse of constraints. It holds

o a set of parameters and

o an equation constraining the parameters

13

Name of the
constraint

Equation – no dependency
between variables

Parameters
with types

May have
language

specification

Assignments and equations

 An assignment in a typical programming language is a
causal connection, where the left hand side is the
dependent variable:

y := x + 3

 An acausal connection is like a mathematical
equation; there is no notion of inputs/outputs. So

y = x + 3

and
y - 3 – x = 0

have the same meaning.
o If any of the variables has a new value, it enforces that the

other variables change accordingly.

14

Constraint definition

15

 Composition is used to define complex constraints
from simple equations

Hierarchy
depicted in a BDD

Parametric diagram

Specification of bindings between system parameters

16

Parametric Diagram (PAR)

17

Parameter bindings

18

 Goal: describe the application of constraints in a
particular context

Values bound
together are equal

Types in a binding
must be compatible

Applications of parametrics

 Parametric specification

o Define parametric relationships in the system structure

 Parametric analysis

o Evaluating constraints on the system parameters to
calculate values and margins for a given context

o Checking design alternatives

o Tool support: ParaMagic plug-in for MagicDraw

 There are modeling standards with better support
for this modeling aspect…

o…such as Modelica

19

Modelica

A language for modeling and simulating
complex physical systems

20

Overview of Modelica

 Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

 The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

 Implementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

 Modeling and simulation IDE: OpenModelica

21

Example: modeling a simple pendulum

 Simple pendulum

 Behavior of the pendulum as a function of time:

 𝜃(𝑡)
 𝜔 𝑡

=
𝜔(𝑡)

−
𝑔

𝐿
𝜃(𝑡)

22

ƟL

ω
m

Modelica code for simple pendulum

23

model SimplePendulum

parameter Real L=2.0;

constant Real g=9.81;

Real thetha (each start = 1.0);

Real omega;

equation

der(thetha) = omega;

der(omega) = -(g/L)*thetha;

end SimplePendulum;

Model name Continuous time
variables, constants

Initial value

(Differential) equations

Pendulum simulation results

24

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

25

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

26

Definition in Modelica:
equation

phi = flange_a.phi;

phi = flange_b.phi;

w = der(phi);

a = der(w);

J*a = flange_a.tau + flange_b.tau;

Definition in Modelica:
equation

auxiliary[1] = x[1];

for i in 1:n - 1 loop

auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]];

end for;

y = pre(auxiliary[n]);

Modelica and Simulation

 Simulating a model means to calculate the values
of its variables at certain time instants

 Advantages

o Observing dangerous/expensive bevaviour at low cost
with no risks

o Resolves scaling issues (size, duration)

 Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

27

Example plant model – train brakes

 Physical model for braking system carrying a mass

 Graphical notation in OpenModelicaEditor

28

Icon

Connection

Port

Example plant model – train brakes

 Physical model for braking system carrying a given
mass

29

Example plant model – train brakes

30

model BrakeExample

Brake brake(

fn_max=1,

useSupport=false);

Mass mass1(

m=1,

s(fixed=true),

v(start=1, fixed=true));

Step step(

startTime=0.1,

height=2);

equation

connect(mass1.flange_b, brake.flange_a);

connect(step.y, brake.f_normalized);

end BrakeExample;

Brake, Mass, and Step are inbuilt
classes to Modelica Library

Can describe both causal
and acausal connections

between ports

 Plot values w.r.t. time (displacement)

Brake times and distance

31

 X-Y plot (speed w.r.t. displacement)

The mass stopped
after 1s at 0.6m

The speed reduced to
0m/s after the mass

moved 0.6m

Summary

 Complex system design requires modeling of
physical parameters

o SysML constraint block, parametric diagram

 Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

o Modeling language for this purpose: Modelica

 Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive

32

