
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Safety-critical systems:
Architecture

Systems Engineering course

István Majzik
majzik@mit.bme.hu

Overview of the goals

Previous topics

 What we specified?

o Safety function requirements: Function which is
intended to achieve or maintain a safe state

o Safety integrity requirements: Probability of a safety-
related system satisfactorily performing the required
safety functions (i.e., without failure)

 Safety Integrity Level and component fault rates

o SIL 4: 10-8 ...10-9 faults per hour

o Typical electronic components: 10-5…10-6 faults/hour

o Typical software: 1..10 faults per 1000 line of code

???

Goals

 Safety critical systems study block

1. Requirements in critical systems: Safety,
dependability

2. Architecture design (patterns) in critical systems

3. Evaluation of system architecture

 Focus: Design of system architecture to ...

o maintain safety

o handle the effects of faults in hardware and software
components

Learning objectives

Architecture design in safety critical systems

 Understand the role of architecture

 Know the typical architecture level solutions for
error detection in case of fail-stop behavior

 Propose solutions for fault tolerance in case of

o Permanent hardware faults

o Transient hardware faults

o Software faults

 Understand the time and resource overhead of
the different architecture patterns

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fail-stop operation

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

1. Single channel architecture with built-in self-test

 Single processing flow with error detection

 Scheduled hardware self-tests

o After switch-on: Detailed self-test

o In run-time: On-line tests

 Online software self-checking

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

 Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

Implementation of on-line error detection

 Application dependent (ad-hoc) techniques
o Acceptance checking (e.g.: too low, too high value)

o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)

o Structure checking (e.g.: broken structure)

 Application independent (platform) mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o OS level checking
• Invalid parameters of system calls

• OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

States in case of stuck-at 0/1
faults:

States in case of transition
fault:

States of two correct (adjacent) cells
to be checked:

Testing: „March” algorithms (w/r)

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

 } else {

d: m=m-i;

 }

e: printf(“%d\n”,n);

 }

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

 } else {

d: S(d); m=m-i;

 }

e: S(e); printf(“%d\n”,n);

 }

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph:

b

c

d

e

a

f

2. Two-channels architecture with comparison

 Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

 High error detection
coverage
o The comparator is a critical

component (but simple)

 Disadvantages:
o Common mode faults

o Long detection latency
=

stop n

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety checking

 Independent second
channel
o Safety bag: only safety

checking

o Diverse implementation

o Checking the output of
the primary channel

 Advantages
o Explicit safety rules

o Independence of the
checker channel 

stop n

Example: Elektra interlocking system

Two channels:

 Logic channel:
CHILL (CCITT High
Level Language)
procedure-
oriented
programming
language

 Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
language

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fault-tolerant systems

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Fault tolerant systems

 Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault  error  failure chain

• Detecting the error and assessing the damage

• Involving extra resources to perform corrections / recovery

• Providing correct service without failure

• (Providing degraded service in case of insufficient resources)

 Extra resources: Redundancy

o Hardware

o Software

o Information

o Time

resources (sometimes together)

Categories of redundancy

 Forms of redundancy:
o Hardware redundancy

• Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
• Extra software modules

o Information redundancy
• Extra information (e.g., error correcting codes)

o Time redundancy
• Repeated execution (to handle transient faults)

 Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load

o Hot: The redundant component is active in fault-free case

Overview: How to use the redundancy?

 Hardware design faults: (< 1%)

o Hardware redundancy with design diversity

 Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g.: redundant processor)

 Hardware transient operational faults: (~70-80%)

o Time redundancy (e.g.: instruction retry)

o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

 Software design faults: (~ 10%)

o Software redundancy with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

 Duplication with diagnostics:

o Error detection by comparison

o With diagnostic unit:
Fault tolerance by switch-over

 TMR: Triple Modular Redundancy

o Masking the failure
by majority voting

o Voter is a critical component
(but simple)

 NMR: N-modular redundancy

o Masking the failure by majority voting

o Mission critical systems: Surviving the mission time

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

 Output

Majority

With diversity in case of considering design faults

2. Fault tolerance for transient hardware faults

 Approach: Fault tolerance implemented by software

o Detecting the error

o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

 Four phases of operation:

 1) Error detection

 2) Damage assessment

 3) Recovery

 4) Fault treatment and continuing service

Phase 1: Error detection

 Application independent mechanisms:

o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

 Application dependent techniques:

o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …

Phase 2: Damage assessment

 Motivation: Errors can propagate among the components
between the occurrence and detection of errors

 Limiting error propagation: Checking interactions

o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

 Estimation of components affected by a detected error

o Logging resource accesses and communication

o Analysis of interactions (before error detection)

! Fault Error detection
Interactions

Phase 3: Recovery

 Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

 Backward recovery:

o Restoring a prior error-free state (that was saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

 Compensation:

o The error can be handled by using redundant information

Types of recovery

 State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

Backward recovery

 Backward recovery based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Save: copying the state periodically into stable storage

• Recovery: restoring the state from the stable storage

• Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

 Limited applicability: Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of
operations

o Analogy: ”undo”

Scenarios of backward recovery

t

!
t

!
t

!
t

Saved state 1 Saved state 2

Fault Detection

Phase 4: Fault treatment and continuing service

 For transient faults:
o Handled by the forward or backward recovery

 For permanent faults:
o Recovery is unsuccessful (the error is detected again)

o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
• Replacing the faulty component using redundancy

• Degraded operation: Continuing only the critical services

o Repair and substitution

4. Fault tolerance for software faults

 Repeated execution is not effective for design faults!

 Redundancy with design diversity is required

Variants: Redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common faults

 Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

 Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

o Majority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a critical component (but simple)

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version
programming

Recovery
blocks

Error detection Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always
(active)

Only in case of fault
(passive)

Number of
tolerated faults

[(N-1)/2] N-1

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults
o Fault tolerance implemented by software

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

Redundancy in resources and time
 Extra resources (%)

Extra time (s)
0.001 0.1 10 1000

TMR

100

10

N-version
programming

Error correcting
codes

Retry Reload Restart

Backward
recovery

Recovery
blocks

Backward
recovery in
distributed

Forward
recovery

systems

Software architecture design in standards

 IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

 Software
architecture
design

