
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Process modeling

Vince Molnár

1

Informatikai Rendszertervezés
BMEVIMIAC01

Roots & Relations

 Flow-sheets and flow-charts are used
everywhere...

o Brainstorming

o Computer algorithms

o Business processes

2

3

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

4

Learning Objectives

Process modeling

•Understand the basic blocks control and data flow modeling
•Identify the steps of, the data being used by and the logical
flow of a process
•Understand the syntactic building blocks of UML Activity
Diagrams
•Understand the semantics of UML Activity Diagrams
•Use hierarchy to structure the models and express
abstraction-refinement of actions
•Build clean and expressive models by using best practices
•Be able to use Activity Diagrams in high-level process
modeling and low-level behavior modeling

PROCESS MODELING

Objectives

Main aspects

5

Objectives

 Transformation of inputs to outputs through a
sequence of actions

 Model control flow and data flow

 Definition of high-level processes

o Elaborate use cases

o Functional decomposition

 Definition of low-level activities

o Specific behavior executed at given points

• E.g. reaction to an event

6

Main aspects

 Atomic activities (Actions)

o An activity that is not detailed further

o Depens on the level of abstraction

• Use case

• Informal description of some activity

• Primitive operation (e.g. object access/update, messaging)

o May be refined later (see Activity Decomposition)

 Control flow

o Specifies the order in which activities can be executed

o Also: cuncurrency and exceptions

7

Main aspects

 Data flow

o Specifies the flow of data between activities

• Where can a certain data element propagate?

o Facilitates data flow analysis

• …to reveal opportunities for optimization

• …to avoid errors caused by improper data usage

 Activity allocation

oWhich functional block will execute an activity?

 Activity decomposition

o Refine and/or reuse activities

8

UML ACTIVITY DIAGRAM

Control flow

Activity refinement

Data flow

Allocation

9

Basic control flow – Atomic Activity

10

Compile

Basic control flow – Initial & Final node

11

Compile

Basic control flow – Sequence

12

Compile Link

Basic control flow – Decision & Merge

13

[modified]

[unmodified]

Compile1

Link

Basic control flow – Loop

14

[modified]

[unmodified]

Compile1

[no syntax
errors]

[syntax
errors]

Edit

Link

Basic control flow – Fork & Join

15

[modified]

[unmodified]

Compile1

Edit

Link
[modified]

[unmodified]

Compile2

[no syntax
errors]

[syntax
errors]

Activity refinement

16

Edit

Link

[no syntax
errors]

[syntax
errors]

: Compile

Instance of another
Activity Diagram

Activity refinement

17

Edit

Link

[no syntax
errors]

[syntax
errors]

Compile

[modified]

[unmodified]

Compile1

[modified]

[unmodified]

Compile2

Basic control flow – Flow end

18

Edit

Link

[no syntax
errors]

[syntax
errors]

Compile

[modified]

[unmodified]

Compile1

[modified]

[unmodified]

Compile2

Modeling data flow

 Activities usually consume and produce data

o Data can mean physical atrifacts

o The produced data can be an input for another activity

 Notation: Input/Output pins

o Can have name and type

o Data flow is denoted by solid arrows

19

Link
objs : ObjectFile[*] exe : Executable

Modeling data flow

 An Activity can have parameters

o Parameter pins: similar to Input/Output pins

o Appear on the frame of an Activity Diagram

20

Act [Activity] MyActivity [Activity with parameters]

[success]

[failed]

Positive

Evaluate

Negative

 Output pins „emit” a single data token

o Input pins connected to the same output pin compete
for the data token

 Use a fork to produce multiple data tokens

Exclusive/Shared data

21

Consume1

Produce

Consume2

Consume1
Produce

Consume2

Control flow vs. Data flow

 Data flow denotes data dependencies

o Some step requires data from another

 Control flow denotes control dependencies

o Some step can be executed only after another

 Data flow can substitute control flow

o Modeling control flow is not mandatory if there is a
data flow between two actions

• Still, it is sometimes useful to have them separately

o Control flow can be regarded as a “void” data flow

22

 Use an object node to emphasize the flowing data

 Built-in object nodes in SysML:

o Central buffer:

• Can model a message queue or pool

• Same behavior as an output pin, but not related to an action

o Datastore:

• Denotes a permanent storage

• Data tokens are stored and retreived

Object node

23

Encode
Generate
random

Key
: Key : Key

Atomic activities (Actions)

Primitive action
E.g. object access,

update and
manipulation actions.

Send signal
Send a signal to the

specified target.

Accept event
Accepts incoming
events. Typically

outputs received data.

Accept time event
Raised by an expiration

of an (implicit) timer.

Call behavior
Executes another

behavior (e.g. another
Activity).

24

Primitive
action

Call
behavior

<Signal>

param result

signal

target

<Event1>,
…

data

at(…)

after(…)

Interruptible activity region

Interruptible activity region

 Specifies a part of the activity that will be
interrupted if a certain event occurs

o Control is transferred to an exception handler

+ Some data regarding the event

o Similar to a try-catch block

 Interrupt…?

o Not in the sense of HW interrupts

• See State Machines

o Rather like SIGINT, execution of the activity stops

25

Interruptible activity region

26

Interruptible
Action 1

Interruptible
Action 2

Interrupt
Signal

signal
Interrupt
handler

Interruptible
activity region

Signal
reception

Interrupting edge

Allocation of Actions

 Actions can be allocated to blocks

o Which component executes the step?

27

«subsystem»
Occupation Sensor

«subsystem»
Camera

«subsystem»
Positioning System

Monitor
occupation

Observe
environment

Follow
position

Allocation
partition

Represented
block

Summary

 Atomic activities (Actions)
o Primitive actions

o Send signal

o Accept (time) event

o Call behavior

 Control flow

o Initial/Final node, Flow final

o Decision & Merge

o Fork & Join

o Interruptible activity region

28

Summary

 Data flow

o Input/Output pins

o Parameter pins

o Object nodes

 Activity allocation

o Allocation partition

 Activity decomposition

o Call behavior actions

o Parameter pins

29

SEMANTICS

Tokens & Channels

Actions

Control structures

30

Tokens and Channels

 Represent the “right to execute” and data
elements as tokens

o Data tokens have type and value

o Control tokens are typeless (like void)

 A channel is a buffer where tokens can be put to
and read from

o Usually FIFO (can be modified by stereotypes)

 What counts as a channel?

o Output pin/Object node Input pin/Object node

o The buffer is “in” the starting point

31

Actions

 To execute (fire) an action, it needs

o A data token on all of its input pins

• Type conformance: argument type < parameter type

o A control token from all incoming control flow
connectors

+ An incoming event in case of “accept” actions

o Actions connected to the same output compete for
the data/control token

 An executed (fired) action produces

o A control token on all outgoing control flow connectors

o A data token on all output pins

32

Control structures

 Initial node:

o Produces a control token when the Activity is invoked

 Final node:

o Removes all control tokens and returns from the Activity

 Flow final:

o Consumes a control token

 Decision:

o Forwards incoming token to selected output

 Merge:

o Forwards incoming token from any input to output

33

Control structures

 Fork:

o Copies and forwards incoming token to all outputs

 Join:

o Waits for a token on all inputs then forwards one

 Interruptible activity region:

o Removes all control tokens from region when interrupted

34

Example: Process collected data

35

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Data3Data2Data1

Example: Process collected data

36

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

37

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

38

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

39

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

40

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

41

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

42

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

43

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

44

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

45

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

46

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

47

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

48

Control token

Data1 token

Data2 token

Data3 token

Data3Data2Data1

Default1 Default2 Default3

Process

[OK]

[missing]

[OK]

[missing]

[missing]

[OK]

Example: Process collected data

49

Control token

Data1 token

Data2 token

Data3 token

MODELING WITH
UML ACTIVITY DIAGRAMS

Modeling high-level processes

Modeling low-level activites

Deadlock, Ambiguity & Completeness

Best practices

50

Modeling high-level processes

Describe system-level processes

 As a refinement for Use Case Diagrams

o Use case flows:

• Action = Use Case

• “In what order can use cases be executed?”

• Typical and exceptional scenarios

o Use case scenarios:

• Actions are informal steps

• “What happens when a Use Case is executed?”

• Actions may later be refined into Activities
– …and allocated to functional blocks

51

Modeling low-level activities

Describe low-level behavior to be implemented

 As a refinement of operations

o Can describe the control and data flow of the method

o With fUML: executable models

 As the behavior to execute in state-based models

o Reactions to an event/signal

o Continuous behavior in a certain state

 As an alternative to Interaction Digrams

o Specify communication and internal behavior

o Relying on Allocation Partitions

52

Deadlock, Ambiguity & Completeness

 Deadlock-freeness:
o Control must always reach a Final node

o Often due to incorrect use of control structures
• Can be avoided by well-structuredness (see System Modeling)

 Unambiguity:
o There shall never be more than one condition that

evaluates to true at the same decision
 Non-deterministic behavior

 Completeness:
o There shall always be at least one condition that evaluates

to true at the same decision
 Deadlock

53

Best practices

 How to build a model?
1. Model the typical (primary) control flow first

2. Add alternate and exceptional paths

3. Identify and model data and data flows

4. Decompose the initial model by refining Actions

5. Allocate Actions to functional blocks

 How to build a good model?
o Always add a Final node to indicate the end of activity

• Add multiple ones to indicate different or abnormal outcomes

o Avoid ambiguity and incompleteness

o Strive to build a well-structured model

54

RELATIONS TO OTHER DIAGRAMS

Class/Block Diagram

Activity Diagram

Interactions

55

Use case diagram, Block diagram

Use Case Diagram

 Refines use cases

o Use case flow

o Use case scenario

Block Diagram

 Allocates activities to blocks

 Defines main (continuous) behavior of blocks

 Defines behavior of operations

 Defines usage of data in a process

56

Interactions, State Machines

Interactions

 Refines/Extends Interactions

oModeling of communication and internal behavior

State Machines

 Defines behavior of actions in State Machines

o How to react to an event

o What to do in a state

57

