
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform modeling and allocation

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

Learning Objectives

Platform models

•Addressing non-functional requirements in the platform model
•Addressing constraints coming from the runtime platform like computation
and communication resources

Allocation

•Understanding the concept of allocation
•Identify the basic design decisions made during allocation (resource
allocation., scheduling, communication allocation)

Overview of architecture description languages

• AADL

• AUTOSAR

Why platform models are needed

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?

5

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?  in Software!

6

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?  in Software!

o Maybe in hardware? (e.g., sensors, GPU, FPGA, etc.)

o What will execute our software functions?

o How will they be able to communicate

7

Platform model

 The platform model specifies the physical building
blocks of the execution platform

o the execution resources

• memory, CPU, etc.

o the available communication resources

• Network interfaces, routers, etc.

o the properties of the used HW elements

• Weight

• Availability

• Size

• etc.

8

Defining the platform model I.

 Resource capturing phase

o Specification of reusable hardware entities

• Coming from HW libraries/technical dictionaries

• Defined by HW designers within the project

atomic hardware units of the execution platform
– Embedded systems: Processor, Communication controller

– Define hardware properties

9

Defining the platform model II.

 Platform composition phase

o (Already available HW design  only modifications)

o Definition from bottom-up based on the atomic
building blocks

 Similar modeling task as the functional
component definition BUT

o Connecting blocks == physical linkage

o Part-whole relationship == physical containment

o Physical HW properties are needed to be taken into
consideration

• Size, weight, number of ports, etc.

10

Defining the platform model II.

11

Functions to Platform allocation

Usually HW-SW allocation

Allocation example

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

Functions

System

Display

AirCond

Panel

Supply fresh air

Supply hot air

Monitor
temperature

Set
temperature

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

Only one function per
partition

2

4

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

2

4

Modify HW architecture
for more resources

2

2

Allocation example – communication channels

SW functionality

1

2

6

4

3

5

HW Communication
channels

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

System

Display

AirCond

Panel

AFDX

ARINC 429

ARINC 653
ports

One possible
candidate is

selected

2

2

Allocation

 Input:
o Functional model + platform model

o Additional non-functional constraints

 Output:
o System Architecture

 The System Architecture defines for each instance
of a Function
o where and when to execute

o when to communicate

o and on which bus

17

Where and when to execute

 Platform (HW)

o Available memory

o CPU performance

o Redundancy

 Functional (SW)

o Memory required

o Execution window required

o Safety aspects
• E.g., criticality levels

18

 Allocate the functions to their designated execution resource

o Processor, GPU, server, node, etc.

 Schedule the execution of functions

o Based on their required execution window

• Major driver of the allocation process

 Constraints (usually) taken into consideration

When to communicate and on which bus
 Allocate Function model level communication means to

platform communication resources
o Information flow to bus mapping
o Data/message mapping to platform representation
o Scheduling

• Messages, buses, routers
• Major driver of the allocation process

o Constraints (usually) taken into consideration

19

 Platform (HW)
o Connectivity

• comm. architecture
• Routing
• Supported modes

o Bandwidth & Speed
o Precision

• Data mapping

o Redundancy
• Independent paths

 Functional (SW)
o Message properties

• size

• priority

o Communication mode

• 1-1, 1-n, n-n

o Safety aspects

• WCET

Additional aspects of the allocation

 Multi-level allocation
o Complexity is handled on multiple abstraction-level 

allocation is handled between all hierarchies

 Resulting System Architectures are used for validating
system level functional/non-functional aspects
o Timing requirements, safety requirements, etc.

o Used methods: Static checks, simulations, HiL, etc.

 No perfect allocation  Multi-dimension
optimization problem
o Design Space Exploration

20

Architecture Description Languages

ADLs

Abstract

 ”The architecture of a program or computing
system is the structure or structures of the
system, which comprise software components,
the externally visible properties of those
components, and the relationships among them.”

 (no universal agreement on what ADLs should
represent)

 Software Architecture in Practice,
Bass, Clements, and Kazman

22

Architecture Analysis and Design
Language (AADL)

AADL
 Architecture Analysis and Design Language (AADL) is a standard

architecture modeling language
o Avionics
o Aerospace
o Automotive
o Robotics

 Component based notation
o Task and communication architecture

 Designed for modeling and analysis in mind
 SAE standard (AS 5506A)

 First was called Avionics Architecture Description Language
o Derived from MetaH created by Honeywell

 V1 version in 2004
 V2 version in 2009

24

AADL

 Based on the component-connector paradigm

 Key Elements:

 Core AADL language standard (V2-Jan,2009, V1-Nov 2004)
o Textual & graphical, precise semantics, extensile

 AADL Meta model & XMI/XML standard
o Model interchange & tool interoperability

 Annexes Error Model Annex as standardized extension
o Error Model Annex addresses fault/reliability modeling, hazard

analysis

 UML 2.0 profile for AADL
o Transition path for UML practitioner community via MARTE

 EMF representation also available (without EFeatureMap!)

25

AADL
 Precise execution semantics for components

o Thread, process, data, subprogram, system, processor, memory,
bus, device, virtual processor, virtual bus

 Continuous control & event response processing
o Data and event flow, synchronous call/return, shared access
o End-to-End flow specifications

 Operational modes & fault tolerant configurations
o Modes & mode transition

 Modeling of large-scale systems
o Component variants, layered system modeling, packaging,

abstract, prototype, parameterized templates, arrays of
components and connection patterns

 Accommodation of diverse analysis needs
o Extension mechanism, standardized extensions

26

AADL Representation Forms

27

thread speed_processing

features

raw_speed_in: in

data port;

speed_out: out data

port;

properties

Period => 50 ms;

end data_processing;

<ownedThreadType name=„speed_processing">

<ownedDataPort name="raw_speed_in"/>

<ownedDataPort name="speed_out" direction="out"/>

<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"

value=“50" unit="ms"

</ownedValue>

</ownedPropertyAssociation>

</ownedThreadType>

speed-
processing

50

AADL Language Elements

 Core modeling
o Components
o Interactions
o Properties

 Engineering support
o Abstractions
o Organization
o Extensions

 Infrastructure

 Strong modeling capabilities for embedded SW and
Computer systems

28

AADL Components

 Top element system

Example:
package F22Package

public

system F22System

end F22System;

system WeaponSystem

end WeaponSystem;

system implementation F22System.impl

subcomponents

weapon: system WeaponSystem;

end F22System.impl;

end F22Package;

29

AADL SW Components

 System – hierarchical organization
of components

 Process – protected address space

 Thread group – logical organization
of threads

 Thread – a schedulable unit of
concurrent execution

 Data – potentially sharable data

 Subprogram – callable unit of
sequential code

30

Subprogram

Process

Thread group

Thread

System

Data

AADL SW Components

 Process

o Protected virtual address space

o Contains executable program and data

o Must contain 1 thread

 Thread

o Concurrent tasks

o Periodic, aperiodic, sporadic ,background, etc.

o Interaction through port connection, subprogram calls
or shared data access

o errors: recoverable, unrecoverable

31

AADL SW Components

 Ports and Connections

o Data (non queued data), Event (queued signals) or
Event data (queued messages)

o Complex Connection hierarchies through components

o Timing

o Feature groups

 Data

o Optional but makes the analysis more precise

 Flows

o Logical flow of data and control

32

AADL Computer Components

 Processor / Virtual Processor –
Provides thread scheduling and

 Memory – provides storage for
data and source code

 Bus / Virtual Bus – provides
physical/logical connectivity
between

 Device – interface to external
environment

33

BUS Virtual Bus

Processor

Virtual Proc.

Memory

Device

AADL Computer Components

 ”Real” HW components

o Bus transmission time, latency,

o Processor timing, jitter

o Memory capacity

o Etc.

 Logical resources

o Thread scheduling of a processor

o Communication protocol overt network connection
(modeled as bus)

o Transactional memory (modeled as memory)

34

AADL Computer Components
 Processor

o As HW
• MIPS rating, size, weight, clock, memory manager

o As Logical resource
• Schedule threads  scheduling policies and interruption
• Execute SW

 Bus
o As HW

• Physical connection inside/between HW components

o As logical resource
• Protocol, which are used for the communication

 Memory
o Processes must be in memory
o Processors need access to memory

 Device Components
o Represents element that are not decomposed further
o Sensors/Actuators
o Device Driver

35

AADL Binding

 Binding

o Bringing SW models and the execution platform
together

o Virtual processors  can be subcomponents of other
virtual processors  ARINC653 partitioning

o Hierarchical Scheduling

o Virtual buses to physical ones

• One-to-one

• Many-to-one

36

Summary

 After 15 years of mainly DoD research it is getting
mature enough

 Many pilot project uses AADL

o FAA

o DoD

o Lockheed Martin

o Rockwell Collins (Steven P. Miller)

 Many research paper on formal analysis,
simulation and code generation

 Ongoing harmonization with SysML and MARTE

37

AUTOSAR

History
 AUTomotive Open System ARchitecture
 Started in 2002
 BMW, Bosch, Daimler, Conti, VW, + Siemens
 Industrial standardization group

o Current standard version: 4.0 (end 2009)
o Currently we use 3.1 (end 2008)

 Members: OEMs, Tool vendors, Semiconductor manufacturers Europe-
dominated

 Scope
o Modeling and implementation of automotive systems
o Distributed
o Real-time operating system
o String based interaction with HW and environment

 Out of scope
o GUI, Java, internet connectivity, File systems, Entertainment systems, USB

connectivity etc.

39

Key Concepts of AutoSAR
 A standard runtime architecture

o component-oriented
o layered
o extensible

• New functionalities
• New components (component implementations)

o all major interfaces standardized
o Standardized Run Time Environment (RTE)

 A standard modeling and model interchange approach
o follows the principles of model-driven design
o supports the interchange of designs
o supports the collaborative development

• Between different developers,
• Teams,
• And even companies

 Conformance test framework
o assuring the conformance to the standard
o Still evolving – new in version 4.0

40

High-level design flow

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level software modeling
• Definition of

• components
• component ports
• port interfaces
• data types – logical

• Result
• Virtual Functional Bus (VFB)-level
software model

High-level design process
Component
Model (VFB)

High-level
SW modeling

Detailed
Component

Design
Component

Internal
Behavior

Detailed component design
• Specification of

• component internal behavior
• functional breakdown
• implementation/use of ports

• Non-AutoSAR
• specification of detailed behavior
• any tool can be used

• UML
• Simulink
• etc.

• Result
• AutoSAR component internal behavior
model
• Non-AR: behavioral models/design

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

Detailed
Component

Design
Component

Internal
Behavior

High-level hardware modeling
• Specification of

• Electronic Control Unit (ECU) resources
• CPU
• memories
• peripherals
• communication hw

• system topology
• ECU instances
• clusters
• connections

• Result
• ECU resource model – for all ECUs
• System topology model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Hardware-software integration
• mapping

• software component allocation
• component implementation selection
• data-element to signal mapping

• inter-ECU communication
• communication configuration

• signal to Protocol Data Unit (PDU) mapping
• PDU to frame mapping
• Signal, PDU, Frame triggering
• Cluster and controller configuration
• Frame scheduling (LIN, FlexRay)

• Result
• System model describing the integrated
HW/SW system

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Component implementation
• Implemeting all components

• automatically
• TargetLink
• Simulink Realtime workbench
• SCADE
• etc.

• manually
• Result

• implementation of the components
• C/C++/…

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

ECU configuration
• Configuring all basic software modules

• based on the system model
• for each ECU separately

• Result
• ECU configuration model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementationBasic Software Services (BSW) configuration

generation
• Configuration generation for basic software

• from the configuration model
• Result

• Configuration files (c,h)
• Generated modules/module fragments

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Compilation and linking
• Building and linking all sources

• application component implementations
• basic software modules
• BSW configuration files

• Result
• Deployable binary file

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Models in the design flow

 Software Component Template

o Components, ports, interfaces

o Internal behavior

o Implementation (files, resource consumption, run time,
etc.)

 ECU Resource Template

o Hardware components, interconnections

 System Template

o System topology, HW/SW mapping

o Comm. matrix

Models in the design flow 2

 Basic Software Module Template

o BSW modules
• Services

• Schedulable entities

• Resource consumption

 ECU Configuration Parameter Definition Template

o Configurable parameters of BSW modules

 ECU Configuration Description Template

o Actual configurations of BSW modules

o Based on the ECU Parameter Definition

AUTOSAR vs. UML/SysML/... modeling

 AUTOSAR defines models with

o Domain Specific Constructs

o Precise syntax

o Synthesizable constructs
• Direct model -> transformations

• Direct model -> detailed model mappings

o Different abstraction levels
• From Virtual Function Bus to configuration

 Result

o Models are primary design and implementation artifacts
• More precise, consistent modeling should be done

AUTOSAR Components

Component-oriented design

 What is a component?
o “A component is a self contained, reusable entity that

encapsulates a specific functionality (and/or data), and
communicates with other components via explicitly defined
interfaces.”

 AUTOSAR uses the term component for application-level
components

o Elements related to the high-level functionality of the system
under design

 Basic software (middleware) components are called modules.

o Standard elements of the AUTOSAR architecture

Component-based approach

Component

Component

• Encapsulates a specific functionality
• Different kinds

• Composite component – hierarchical refinement
• Application SW component – generic, high level functionality
• Sensor/actuator SW-C – handling sensor or actuator data
• ECU HW abstraction – higher level device driver and abstraction
• ComplexDeviceDriver – time-critical, low-level driver
• Calibration parameter SWC – collects system calibration
parameters
• Service SWC – represents a basic software module from the service
layer

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach

Component

Ports

• The only interaction points between the component and its
environment
• Are implementing port interfaces

• sender receiver (message-based unidirectional
communication)
• client-server (remote procedure call)

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach – port notation

Component

Receiver port Sender port

Server port Client port

Service port
To Basic Software (BSW)

Module services

Virtual Functional Bus

Component A

Component interconnection – the Virtual Functional Bus

Component B

Virtual Functional Bus (VFB)

• Abstract interconnection layer
• Implementation of data/control transport between components
• No hardware/network dependency
• Hides the details of the implementation

• Allows high-level integration and simulation of components
• Before hardware architecture is chosen

Component C Component X

…..

…..

Software Components

 On high-level, atomic components are black
boxes

 Detailed design “looks into” these black boxes

 Main goals

o Detail the behavior to get schedulable entities

o Specify the semantics of port handling

o Specify any service needs

o Specify any RAM, nvRam needs

Refinement of a component

Component

Comp.c Comp.h

Black box definition of a component

Definition of component internal
behavior
Schedulable entities, connections to
the ports

Component implementation.
Specification of source and header
files

Component internal behavior

 Specification of the internals of an atomic
SWC

 Schedulable elements

o Called: runnable entities

 Connection of ports

o Port semantics

o Port API options

 Inter-runnable communication

 Runnable activation and events

Component internal behavior – runnable entities

 Smallest code-fragments considered by RTE

 Subject to scheduling by the OS

 Abstraction of a schedulable function

 Communicates

o Using the SWC ports

o Using inter-runnable communication facilities

 Is activated by

o An RTE event

• Communication-related event

• Timing event

Summary of AUTOSAR

 AUTOSAR defines

o A component-oriented system design approach
• Domain specific modeling language

• A high level design process

• Standard middleware (basic software) stack

– Standard interfaces

– Standard configuration descriptors

 AUTOSAR compliant ECU software

o Includes several BSW and application components

o RTE provides the integration (glue) between these

o Configuration and glue code is mostly auto-generated

Summary

