Code generation and
model transformation
approaches

Systems Engineering BSc Course

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform-based systems design

R Requirements S~ .
I’ K
/
,/

\
/ \

-

Functional Platform T

Heoe Fault tolerance
& safety
HW/SW

Y4
allocation /’

Component § Architecture 1. 0
behav. model model - ontig. mode
_
.
Linker Config. file

Traceability

Verification and Validation

Learning Objectives

Model and code generation approaches

eBrief overview on model transformation
approaches

eOverview on code generation concepts
eSummary of currently available technologies

e Complex modeling and transformation case study
from the avionics domain

Code generation

(text synthesis)

= |et’s shorten Development time!

= Use our models/requirements/plans to derive...
o Documentation
o Source code
o Configuration descriptors
o Communication messages
o Object Serialization

O ...

= Need to support designing ,text” synthesis

Text synthesis

" The realization of a high-level model on an
implementation platform

= A choice between certain attributes — compromise
between:

o Compatibility
o Performance
o Maintainability

o Reusability

Similarity with compilers

" Mapping between abstraction levels
o e.g., From C to assembly

= Usage of design patterns

o e.g., function calls in C

= Many similarities, NOT a strict separation
o pl. C++ templates, automatically generated ctor+dtor

= Prediction:

o yesterday’s design pattern = today’s code generation
feature = tomorrow’s language element

= Domain-specific instead of universal languages

Example: Source Code generation in MDE

DSM model

uoljeJau

High-level language

Assembly

Major Approaches

= Dediacated
o Specific, ad-hoc
o Using a dedicated code generator

= Template based

Specific, ad-hoc

sourceFile.writce ™ temp = | (AIDA PARTITICH TYFPE®) selfModule.partitions.elements) ;hn™ |

i=n0

for partition in partitions:
numPorts = getMNuwberOfll lCommPorts Partition (currModuleComn, interPartitionContn, partition.partitionllaime)
sourceFile.write (™ temp["™ + str(i] + "].partition id = " + stripartition.partitionID] + LR LU
sourceFile.write (" stropy(&temp[™ + str(i] + "].partition name[0], 107 4+ gtr (partition.partitionilame)] + "LV 0t
sourceFile.write (T temp[™ + str(i]l + M].ports.type = CONST_AIDA_PORTS_TYPE:En"]
sourceFile.write ™ temp["™ + str(i] + "].ports.elements = &Lmem ports " + str(partition.partitionlame) + "[O]:hn™)
sourceFile.writce ™ temp[™ + str(i) + ™].ports.numlfElements = " + str (numPorts) + ":4%n"™)
gourceFile.write [(™\n™)
i=1+1

H# end for

gourceFile.writce (™ n™)

= Designed for the specific problem domain:
Best performance
Quick and dirty
Long development, hard maintainability
Zero reusability
Dedicated problem domains
e Minimal changes during support cycle (safety critical embedded system, defense)
 Certifiability
o Example:
* ARINC653 Multistatic configuration generator (python script)

O O O O O

Dedicated code generator

Parameters
Dedicated Textual
Model S —)
Code generator artifact

= Based on a framework:
o Faster development time
o Slower performance, better reusability

o Embedded systems, moderate changes during project lifecycle

Dedicated code generator

Parameters

Model Dedicated

Code generator

Textual
artifact

= Examples:

O
O

o O O

IBM Rational Software Architect

VASP (DO-178B Level A) Display graphics in avionics
Mathworks

Matlab Simulink

Esterel Scade suite

Template based approach

Parameters

Template

Model > Compiler/generator

Tembplate Executable
Code Artifact

Template based approach

Parameters

Name="John Doe”

Balance="1000S"

Model —_—>

Template
Compiler/generator

Template

Executable
Template

Code

Textual

Dear [Name],

| would like to inform you
that your current balance is
LEIEL S

Artifact

Dear John Doe,

| would like to inform you
that your current balance is
10005

Template based approach

Parameters

Template
Model > Compiler/generator
Temblate . Executable
Code Artifact

= Fastest development time

= Slowest” performance, highest reusability
= Fast changing environments (e.g., web based technologies)

= Complex changes during project lifecycle
o Models and templates can be changed independently

Template based approach

Parameters

Template

Model > Compiler/generator

Template > Executable
Template > Textual
Code Artifact
= Examples:
o JET (for EMF models)
Velocity (/JSP)

Xtend, Acceleo (MDE approach in Eclipse)
AutoFilter (Kalman filters)
Smarty (php)

Model Transformation

Definition of Model Transformation

Modeltransformation engine

Modeling framework

Source MT rule Target-
language language
3 3
" "
Source : Target_
model MT engine model

Overview

Semantics I Transformation rules

nsformat| -

Tine

Modeling framework

Source MT rule Yarget-
language language
3 3
" "
Source : Target_
model MT ensine model

Execution

: Instance models Execution of MT rules
ordering

1. Motivating Example

Object Relational Schema mapping

Example: Object-relational maping

= |mportant as:

o Model transformation
benchmark

= Objective:

o Most widely used industrial

model transformation
(pl. Hibernate, EJB, CDO)

o Input:

UML class diagram

o Output

Customer ruers

Product

-

S

VIPCustomer NormalCustomer

CcD

Sfavourite | Product

~appendix : CD

Relational database schema

~

reviews JT

Customer Product
PK |id PK |[id
—»
kind ” kind
FK1 | favourite FK1 |appendix
T A
reviews
orders \
PK,FK2 |pid
PK,FK2 | pid PK,FK1 |cid

PK.FK1 |cid

Informal definition of the MT rules of the mapping

Customer orders Product Customer Product
- PK |id PK |id
& kind kind
favourite FK1 |appendix
A
VIPCustomer NormalCustomer Book CD
-favourite © Product -appendix : CD reviews
rd .
MEViEws M orders PK,FK2 m
PK,FK2 | pid PK,FK1 |cid
PK,FK1 |cid

Topmost (generalization) classes = Database table + 2 column:
eUnique identifier (primary key),
e tvpe definition

Informal definition of the MT rules of the mapping

-

Customer Hiers Product Customer Product
- PK |id PK |id
—
FANERVAN FANERVAN kind Kind
1 | favour FK1 |appendix
A
PCustomer NormalCustomer Book CD
favourite | Product -appendix : CD reviews
rd -
MEViEws M oraers PK,FK2 |pid
PK,FK2 | pid PK,FK1 |cid
PK.FK1 |cid

Class attributes =» (contained by the topmost classes) Column of the table

Informal definition of the MT rules of the mapping

Customer

orders

Product

I 1

~

/_Tﬂ-.
Book

cD

VIPCu r NormalCustomer
favourite(; Product

Fappendiy | CD

reviews

A

Customer

PK |id

kind
favourite

T

-

Product

PK

id

FK1

kind

appendix

orders

reviews

PK,FK2
PK.FK1

|E. =
==}

PK,FK2
PK,FK1

S

cl

A

Type of the attributes =» foreign key

Informal definition of the MT rules of the mapping

-

Customer orders Product Customer Product

= PK |id PK [id

75 | |
kind < kind
Z‘_\ Z‘_\ ﬁ‘_\‘ FK1 | favourite FK1 |appendix
A A
Book

VIPCustomer NormalCustomer CD
Sfavourite : Product -appendix : CD reviews
reviews 4L PKFK2 | pid
PK,FK1 |cid

Association = A table with two columns
e source and target identifiers
e foreign keys (for consistency)

2. Structure of Modeling Languages

Revision

Metamodel of the O-R mapping

- .. ! | = Source + Target
Association +—t2a— Asc2Tab —a2t-| Table
metamodel
*
Src dStl /\tZC c2t trefT lfkeys = Traceability metamodel:
—» Class T Cls2Tab -~ FKey o For saving the relations
arent between the source and
" I P kcols pkey the target languages
atars | *
v |bype cref y * = Motivation: critical
Attribute +—c2a— Attr2Col —a2c-| Column [« embedded systems
x4 tcols o Traceability
UML Ref DB o Requirement =» Source
code
Customer \ ooers Product p Customer N Product
= PK |id PK |id

kind kind
FK1 |favourite FK1 |appendix
A
Book cD
Hfavourite ; Product appendix cD | reviews

VIPCustomer MNormalCustomer
)l\ orders PK,FK2

PK,FK2 |pid PK,FK1 | cid
PK,FK1 |cid

&

reviews

3. Graph Transformation Rules

Structure of a GT rule

P:COIumj = Graph Transformation Rules

tC0|ST pkey o Left hand side - LHS
C:Class » T:Table * Graph pattern
tcolsi * Precondition for the rule application
K:Column o Right hand side - RHS:
LHS = RHS i * Graph pattern + LHS mapping
* Declarative definition of the rule

application

= Graph Transformation (GT):
— What we get (and not how we get it)

o Declarative and formal paradigm
o Rule base transformation

o Match of the LHS=» match of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text =» graph)

Structure of a GT rule

C:Class » P:Column = Graph Transformation Rules

LHS tCOIST pkey o Left hand side - LHS

T:Table * Graph pattern

CP:Class X I ¢ * Precondition for the rule application

Tparent = o Right hand side - RHS:

K:Column . Graph .
C:Class raph pattern + LHS mapping
RHS * Declarative definition of the rule

NAC application

" Gra ph Transformation (GT) — What we get (and not how we get it)

o Negative Application Condition(NAC):
, e Graph pattern + LHS mapping
o Rule base transformation . n
* Negative precondition of the rule
o Match of the LHS=> application

Image of the RHS * If it can be made true=>»
the rule cannot be applied

* Multiple NACs = only one is true =»
rule cannot be applied

o Declarative and formal paradigm

o Generalization of Chomsky
grammars (hierarchy)
(text =» graph)

Structure of a GT rule

CP: P:Column = Graph Transformation Rules
parent tCOIST pkey o Left hand side - LHS
: * Graph pattern

e » LELE L * Precondition for the rule application
tCOIS¢ o Right hand side - RHS:
S CO e Graph pattern + LHS mapping

LHS RHS * Declarative definition of the rule
application
" Gra ph Transformation (GT) — What we get (and not how we get it)

o Negative Application Condition(NAC):
, e Graph pattern + LHS mapping
o Rule base transformation . n
* Negative precondition of the rule
o Match of the LHS=> application

Image of the RHS * If it can be made true=>»
the rule cannot be applied

* Multiple NACs = only one is true =»
rule cannot be applied

o Declarative and formal paradigm

o Generalization of Chomsky
grammars (hierarchy)
(text =» graph)

4. Application of

Graph Transformation Rules

Application of GT rules

parent parent
Customer:Class

Src

orders:Association

dst

1. Graph pattern matching

P:Column . :

ol " o Match of the LHS pattern in the underlying

COST PXey model

T:Table o match m: LHS = G mapping

o]

K:Column _J L
S .
\\ \\ ~~~ VIPCustomer JNormalCustomer I

\\ \\ NN favourite ; Product

S ~\ N\ =
\\ = _.\ - ~
~

\ gl ~\\ S~

vourite:Attribute \\ \\ EPFWbute —type

~ ~
\ S o S
~
VIPCustomer:Class SrC-reviews:Associat@iSt Book:Class CD:Class
S I
N\

P
k
—— parent parent
~
= Product:Class

Application of GT rules

VIPCustomer:Class

Src- reviews:Associat@I

parent parent
Customer:Class

Src

dst

st
\ﬁ 1

AC check
P:TOI"m" Is there a match g for the NAC in G along the
tcolst pkey m: LHS = G match?
T:Table = Successful match of NAC= m is not a match
ot e B
K:Column _J L
\\ ~ ~ ~~~ VIPCustomer JNormalCustomer I

\\ \\ v o JHavourite : Product

~ ~\ ~ :
sedad oSS reviews
N ~ N,

\ m& ~\\ ~

vourite:Attribute \\\ \\~E’erute — type

\ S S

S
~
:Class

CD:Class

a
00
N

orders:Association

P
k
—— parent parent
~
= Product:Class

Application of GT rules

3. Non-deteministic selection
P:Column : .
== ; o Random selection of a match (if more
COST PKEY than one)
T:Table o No match=>» rule fails
tcols¢ orders
K:Column
RHS
VIPCustomer MormalCustomer Book CcD
\\ Hfawourite - Praduct Fappendix : CD
N .
I \ i FEVIEWS T J
N
G (UML) -
| —P(favourite:Attribute \\\ —Plappendix:Attribute P—type
| N
| _attrs_l \\ _attrsl
No'malCustomer:CIass VIPCustomer:Class <—SFC-reviews:Associat@iSt-bBook:CIass CD:Class
—— t t
\\ paren paren
src orders:Association dst =

Application of GT rules

4. Deletion
P:Column .
tCOIST pkey o Deletion of LHS \ RHS from G
o In LHS yes, in RHS no
T:Table
tCOISi Product
K:Column

RS T1T
' Book cD

VIPCustomer || MormalCustomer
~favourite : Product -appendlx - CD

I i reviEws /I\ J
| ——P{favourite:Attribute —Pappendix:Attribute F—type
i
| _attrs_l _attrsl
No'malCustomer:CIass VIPCustomer:Class [€—SrC-reviews:Association dst 9IBook:Class CD:Class
|
I
—parentrparent
orders:Association dst »|Product:Class j<€———

Application of GT rules

= =

CP: I——|P:Column
parent I pkey
C:Class »j :
U4
2
" I K:Column
Hs 7 I R|15 B
L
] [[
e
G (DB : I
tCust:Tablepkey [I
I
tcols | I
L
—»(Custld:Column L :
—|CustKind:Column '

5.

Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a ,match” of RHS in G

Customer

PK |id

kind

Typical problems...

1) Saving the source model, traceability

The Image of

Cis the same C:Column

C:Class C:Class [«—R:Cls2Tab—>T:Table
t2c c2t
tcolsl
K:Column
LHS RHS

2) Application of the same rule along the same match

C:Column
tcoIsT pkey
C:Class [«—R:Cls2Tab—>T:Table
t2c c2t

tcolsl

K:Column

LHS RHS

Model transformation approaches

MT: categories

= Model-to-Code (M2C) - ©

o Text generation
o AST generation - special case of M2M
o Ad-hoc, dedicated, template based, etc.

= Model-to-Model (M2M)

o Between models

* Intra-domain transformation
(e.g., simulation, refactoring, validation)

* Inter-domain transformation
(PIM-to-PSM mapping, model analysis)

o Bridging semantical gaps

Model Transformation approaches

"= Direct Model Manipulation
= Relational

= Graph Transformation based
= Hybrid
= Other

Direct Model Manipulation

= Models stored in a Model Space
= Manipulation through API
" Queries hand coded

= Examples:
o Base EMF
o Jamda
o SiTra

Relational Approaches

= Based on mathematical relations
o Defined as constraints
o Constraint logic programming

= Queries captured as constraints
= Model manipulation handled by labeling
= Fully declarative definition

= Example:

Graph Transformation based

= Model are graphs = use Graph Transformation

= Declarative definition

= Precise formal semantics

= Queries as graph patterns

= Model manipulation as graph transformation rules

= Examples:
o AGG
o GreAT
o ATOM
o GrGen.Net

Hybrid approaches

"= Combines declarative and imperative definition
= "Developer friendly”
= Typically

o Queries - declarative

o Control Structure = imperative

= Complex language
" Largest transformations are using this approach

= Example:
o ATL
o Viatra

Other - XSLT

= Models as XMl files
"= Model Transformation as XSLT programs

= Hard to maintain
= XMI representations are

o verbose

o poor readability

Model driven development of

ARINC653 configuration tables

A case study

Recent Project

Goal: Allocate SW components to
ARINC653 compliant IMA platform

EVIBRAER [EelyllellEl):
database

Functional Platform
Architecture description

Allocation

Integrated
System
Model

DECOS ‘indexys, MOGENTES/
>

secure .

(CHANGOE

i
MUEGYETEM ITEEZ

Allocating communication channels

SW functionality Communication

q} channels
“5
%} . &' Pack pack | |
System Controller |
Display 1
_ ®@ O |
I
@ O {
{ Temperature | Pack pack ||
) ControHerI I
) |
Zone
Controller
System
Display I l‘, 1’
Air ‘.I"}
Conditioning
panel

e s

MUEGYETEM 176Gz

Aft Zone

Forward
Zone

Flight
Deck

Model Driven Development of IMA Configs
l <
y

VInputs:

e Platform Independent Model (PIM)

| (functional + nonfunc. regs; Simulink)
. * Platform Description Model (PDM)

' for ARINC 653 (DSML)

EVIBRAER [EelyllellEl):
database

Platform
description

Functional
Architecture

Allocation

Integrated
System
Model

(Output:
e Integrated system model
e Ready for simulation

| » End-to-end traceability

Traditional MDA Theory?

Problems:
* Marking is too complex

Platform

ind o Platform
* Not all MT steps can be automated [IRttty

Automated
Model Transf.

Platform

Specific
Model

Model Driven Development of IMA Configs

/' Model transformation chains:
e Designer-guided manual steps
- » Automated steps
e design space exploration
e optimization
‘ e code generators
e Continuous validation of design rules

(EVIBRAER [EelyllellEl):
database

Platform
description

{ Functional
Architecture

4

Allocation

Capture

, constraints \

Explore
alternatives

Integrated
System
Model

/

Automate
consequences

Human
decision

.....
EEEEEE

Model Driven Development of IMA Configs

/ Precise development workflow:
e Aligned with certification-compliant
development process
e Monitors design phases
o completed steps
e incomplete steps

database

{ Functional Platform
Architecture description

Allocation

/ End-to-end traceability:

e Traceability models
e linking FAM and PDM to IAM Integrated
e integration with requirements tool System
(e.g. DOORS) | | Model
e Soft interconnection of models o g :
by incremental model queries

Summary

Template based approach

Parameters

Template

Model * compi ler/generator

> Executable
Template .| Textual
Coda Artifact

Template

Model Driven Development of IMA Configs

I Model transformation chains: EMBRAER UL s
« Designer-guided manual steps database
» Automated steps
» design space exploration Eoncional Platform
* optimization Architecture f description
« code generators
» Continuous validation of design rules

Allocation

‘ Capture l

constraints

Integrated
System
Model

Automate Explore |
consequences alternatives

Human
decision

Maodeltransformation engine

Modeling frameweork

Source Target-
language language
'y 'y

Source Target-
model model

MT engine

Platform-based systems design

- Reguirements -
e - *

" HW library

Functional Platform
maodel madel

Component Architectura
b maodel maodel

code generation|

Source code Config. file

— o5 o

Verification and Valldation

