
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Code generation and
model transformation

approaches

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

2

Learning Objectives

Model and code generation approaches

•Brief overview on model transformation
approaches
•Overview on code generation concepts
•Summary of currently available technologies

Case-study

• Complex modeling and transformation case study
from the avionics domain

3

Code generation
(text synthesis)

Why?

 Let’s shorten Development time!

 Use our models/requirements/plans to derive…

o Documentation

o Source code

o Configuration descriptors

o Communication messages

o Object Serialization

o …

 Need to support designing „text” synthesis

5

Text synthesis

 The realization of a high-level model on an
implementation platform

 A choice between certain attributes – compromise
between:

o Compatibility

o Performance

o Maintainability

o Reusability

6

Similarity with compilers

 Mapping between abstraction levels

o e.g., From C to assembly

 Usage of design patterns

o e.g., function calls in C

 Many similarities, NOT a strict separation

o pl. C++ templates, automatically generated ctor+dtor

 Prediction:

o yesterday’s design pattern today’s code generation
feature tomorrow’s language element

 Domain-specific instead of universal languages

7

Example: Source Code generation in MDE

8

DSM model

High-level language

Assembly

co
d

e
gen

e
ratio

n
co

m
p

ile

Major Approaches

 Dediacated

o Specific, ad-hoc

o Using a dedicated code generator

 Template based

10

Specific, ad-hoc

11

 Designed for the specific problem domain:
o Best performance
o Quick and dirty
o Long development, hard maintainability
o Zero reusability
o Dedicated problem domains

• Minimal changes during support cycle (safety critical embedded system, defense)
• Certifiability

o Example:
• ARINC653 Multistatic configuration generator (python script)

Dedicated code generator

12

 Based on a framework:

o Faster development time

o Slower performance, better reusability

o Embedded systems, moderate changes during project lifecycle

Model
Textual
artifact

Dedicated
Code generator

Parameters

Dedicated code generator

13

 Examples:
o IBM Rational Software Architect
o VASP (DO-178B Level A) Display graphics in avionics
o Mathworks
o Matlab Simulink
o Esterel Scade suite

Model
Textual
artifact

Dedicated
Code generator

Parameters

Template based approach

14

Model

Textual
Artifact

Template
Compiler/generator

Template

Parameters

Executable
Template

Code

Template
Compiler/generator

Template based approach

15

Dear [Name],

I would like to inform you
that your current balance is

[Balance]

Model

Textual
Artifact

Template

Parameters

Executable
Template

Code

Dear John Doe,

I would like to inform you
that your current balance is

1000$

Name=”John Doe”
Balance=”1000$”

Template based approach

16

 Fastest development time

 „Slowest” performance, highest reusability

 Fast changing environments (e.g., web based technologies)

 Complex changes during project lifecycle
o Models and templates can be changed independently

Model

Textual
Artifact

Template
Compiler/generator

Template

Parameters

Executable
Template

Code

Template based approach

17

 Examples:
o JET (for EMF models)
o Velocity (/JSP)
o Xtend, Acceleo (MDE approach in Eclipse)
o AutoFilter (Kalman filters)
o Smarty (php)

Model

Textual
Artifact

Template
Compiler/generator

Template

Parameters

Executable
Template

Code

Model Transformation

Definition of Model Transformation

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Overview

Motivációs
mintapéldaInstance models

2. Modellezési
nyelvek felépítése

Metamodels Transformation rules

Execution of MT rules

Semantics

Execution
ordering

1. Motivating Example

Object Relational Schema mapping

Example: Object-relational maping

 Important as:

o Model transformation
benchmark

o Most widely used industrial
model transformation
(pl. Hibernate, EJB, CDO)

 Objective:

o Input:
UML class diagram

o Output
Relational database schema

Informal definition of the MT rules of the mapping

Topmost (generalization) classes  Database table + 2 column:
•Unique identifier (primary key),
• type definition

Informal definition of the MT rules of the mapping

Class attributes  (contained by the topmost classes) Column of the table

Informal definition of the MT rules of the mapping

Type of the attributes  foreign key

Informal definition of the MT rules of the mapping

Association  A table with two columns
• source and target identifiers
• foreign keys (for consistency)

2. Structure of Modeling Languages

Revision

*
Class

Association

Attribute

src dst

attrs type

parent

*

UML

*Column

*
Table

FKey

fkeys

kcols

tcols

pkey
cref

*

*

DB

*

tref

Asc2Tab

Cls2Tab

Attr2Colc2a

t2c

t2a

Ref

a2t

c2t

a2c

Metamodel of the O-R mapping
 Source + Target

metamodel

 Traceability metamodel:
o For saving the relations

between the source and
the target languages

 Motivation: critical
embedded systems
o Traceability

o Requirement  Source
code

3. Graph Transformation Rules

Structure of a GT rule

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHSmatch of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:

• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

*
C:Class

LHS RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

Structure of a GT rule
 Graph Transformation Rules

o Left hand side - LHS
• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

C:Class

LHS

*
C:Class

parent

NAC

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

Structure of a GT rule

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

4. Application of
Graph Transformation Rules

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
1. Graph pattern matching

o Match of the LHS pattern in the underlying
model

o match m: LHS  G mapping

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
NAC check
 Is there a match g for the NAC in G along the

m: LHS  G match?

 Successful match of NACm is not a match

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
3. Non-deteministic selection

o Random selection of a match (if more
than one)

o No match rule fails

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
4. Deletion

o Deletion of LHS \ RHS from G

o In LHS yes, in RHS no

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Application of GT rules
5. Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a „match” of RHS in G

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (DB)
tCust:Table

CustId:Column

CustKind:Column

pkey

tcols

Typical problems…

RHS

T:Table*
C:Class R:Cls2Tab

t2c c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

1) Saving the source model, traceability

2) Application of the same rule along the same match

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

The Image of
C is the same

in G!

Model transformation approaches

MT: categories

 Model-to-Code (M2C)  

o Text generation

o AST generation  special case of M2M

o Ad-hoc, dedicated, template based, etc.

 Model-to-Model (M2M)

o Between models

• Intra-domain transformation

(e.g., simulation, refactoring, validation)

• Inter-domain transformation

(PIM-to-PSM mapping, model analysis)

o Bridging semantical gaps

Model Transformation approaches

 Direct Model Manipulation

 Relational

 Graph Transformation based

 Hybrid

 Other

Direct Model Manipulation

 Models stored in a Model Space

 Manipulation through API

 Queries hand coded

 Examples:

o Base EMF

o Jamda

o SiTra

Relational Approaches

 Based on mathematical relations

o Defined as constraints

o Constraint logic programming

 Queries captured as constraints

 Model manipulation handled by labeling

 Fully declarative definition

 Example:

o QVT

Graph Transformation based

 Model are graphs  use Graph Transformation
 Declarative definition
 Precise formal semantics
 Queries as graph patterns
 Model manipulation as graph transformation rules

 Examples:
o AGG
o GreAT
o ATOM
o GrGen.Net

Hybrid approaches

 Combines declarative and imperative definition

 ”Developer friendly”

 Typically

o Queries  declarative

o Control Structure  imperative

 Complex language

 Largest transformations are using this approach

 Example:

o ATL

o Viatra

Other - XSLT

 Models as XMI files

 Model Transformation as XSLT programs

 Hard to maintain

 XMI representations are

o verbose

o poor readability

Model driven development of
ARINC653 configuration tables

A case study

Recent Project

Goal: Allocate SW components to
ARINC653 compliant IMA platform

49

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Allocating communication channels

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality

3

System

Display

AirCond

Panel

3

1

2

3

7

4

5

6

8

Communication
channels

Temperature

Pressure

Humidity

Model Driven Development of IMA Configs

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Inputs:
• Platform Independent Model (PIM)
(functional + nonfunc. reqs; Simulink)

• Platform Description Model (PDM)
for ARINC 653 (DSML)

Output:
• Integrated system model
• Ready for simulation
• End-to-end traceability

Traditional MDA Theory?

Problems:

• Marking is too complex

• Not all MT steps can be automated

54

Platform
Independent

Model

Platform
description

Marked
PIM

Platform
Specific
Model

Automated
Model Transf.

Marking

Model Driven Development of IMA Configs
Model transformation chains:
• Designer-guided manual steps
• Automated steps

• design space exploration
• optimization
• code generators

• Continuous validation of design rules

Capture
constraints

Explore
alternatives

Human
decision

Automate
consequences

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Model Driven Development of IMA Configs

Precise development workflow:
• Aligned with certification-compliant
development process

• Monitors design phases
• completed steps
• incomplete steps

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

End-to-end traceability:
• Traceability models

• linking FAM and PDM to IAM
• integration with requirements tool
(e.g. DOORS)

• Soft interconnection of models
by incremental model queries

Summary

58

