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Learning Objectives

Requirements

• Understand the role and major challenges of requirements
engineering in systems design

• Write precise textual requirements

• Understand requirements written by others

• Capture requirements using the SysML language

• Understand the goal of traceability

• Identify relations between requirements

Use cases (System Functions)

• Understand the concepts of actors and use cases

• Capture system functions in use case diagrams

• Identify relations between actors and use cases
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Why are Requirements Needed?



Project Kick-off

 Business Case: Why the project is needed?
o Revenue? Units to be Sold?

 Constraints and Rationale:
o Time: deadlines, iteration cycles
o Budget & Costs: HW, unit cost, development

 Glossary / Terms:
o Identify existing documents, standards
o Identify experts: who knows what?
o Prepare inventory

 Teams
 Context (see: use case diagrams)
 Requirements
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Teams
 Customer team

o Product manager

o Systems engineers

o Business analyst

o Acceptance testing

o Customer service, End user

o Role: 
• We want this (one voice!)

 Stakeholders: 
o Anyone interested in the

project

o Regulation bodies

o Competitors

o Other managers / divisions …

 Development team
o Systems engineers

o Software engineers

o Hardware/computer 
engineers

o Mechanical, etc. 

o Role: 
• Implement features upon

customer demand

• Give advise on feasibility

 Expert
o Knows technical details of 

how something works

o Expensive and busy
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Types of Communication
How many people? Direction? Style?

Email Multiple Unidirectional Asynchronous

Phone call Two Full duplex Synchronous

Instant messaging Two/Multipl Nearly full duplex Asynchronous

Group chat Multiple At will Asynchronous

Web meeting Multiple Full multiplex Synchronous
(Scheduled)

Shared screen Few Full duplex Synchronous

Whiteboard Multiple At will Asynchronous
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Face-to-face meeting is most effective, but:
• large overhead and effort: takes everyone’s time
• geographical distribution
• long product life-cycle: people no longer there

In your homework:
• Joint team meetings
(during course slot)
• Basecamp + Slack
• Magic Draw team server
• Skype, telephone, etc.



What is a Requirement?



Definition of a Requirement

 Definitions
o A condition or capability a system must conform to

(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

 Each requirements needs to be
o Identifiable + Unique: unique IDs

o Consistent: no contradiction

o Unambiguous: one interpretation

o Verifiable: e.g. testable to decide if met

 Captured with special statements and vocabulary
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The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR):
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR):
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW 

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard



Functional vs Extra-functional

Functional

• Specific to a component of the system

• Core technical functionality

Extra-functional

• Fulfilled by the system as a whole

• Performance

• Reliability

• Safety

• Security
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How to Write Requirement?



Best practices for writing textual requirements

 A textual requirement contains
o a short description(stand-alone sentence / paragraph)
o of the problem and not the solution

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions

• Example: 
The railway operator shall create a direct route
between any two points on the track

o Be precise! (Quantitative is better than qualitative)
o Avoid passive sentences

 Use of auxiliaries:
o Positive: shall/must > should > may
o Negative: must not > may not
o They specify priorities!
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Examples

Functional:

• The operator shall be able to change the
direction of turnouts

• Train equipments shall periodically log 
sensor data with a timestamp

Safety:

• The system shall ensure safe traffic within a 
zone

• The system shall stop two trains if they are
closer than a minimal distance

• No single faults shall result in system failure

Performance:

• The system should allow five trains per 
every 10 minutes

Reliability:

• The allowed downtime of the system
should be less than 1 hour per year

• The system shall continue normal
operation within 10 minutes after a 
failure

Supportability: 

• The system shall allow remote access for
maintenance

Security:

• The system shall provide remote access
only to authorized personnel

Usability:

• The user interface should contain only 3 
alerts at a time
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Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system
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Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?



Modeling Requirements in SysML



Roots & Relations

 Document based system development

o Formulated requirements textually (e.g. in Word)

o Handled by Req. management tools (e.g. DOORS)

o Challenge:  complexity
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SysML overview (System Modeling Language)

 „UML for Systems Engineering”
o Supports the specification, analysis, design, verification 

and validation of systems that include hardware, software, 
data, personnel, procedures, and facilities

 Developed by OMG and INCOSE (International 
Council on Systems Engineering)

 OMG SysML™ (http://www.omgsysml.org)
o RFP – March 2003
o Version 1.0 – September 2007
o Version 1.1 – November 2008
o Version 1.2 – June 2010
o Version 1.3 – June 2012
o Version 1.4 – September 2015
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http://www.omgsysml.org/


SysML good to know

 SysML is for interdisciplinary systems

 Examples for systems:

o Railway, Automobile, Spacecraft, Factory, etc.

o Thirty Meter Telescope is designed with SysML (tmt.org)

 SysML is only a language, how it is used is another
question – model only what is important

 Methodologies (recommendations, best practices)

o SYSMOD

o NASA System Engineering Handbook

o OOSEM (Object-Oriented Systems Engineering Method)

o ESEM (Executable System Engineering Method)
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http://www.tmt.org/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301.pdf
http://magedelaasar.com/wp-content/uploads/2016/06/ESEM_v3.pdf


Recommended materials

 Books

o Tim Weilkiens:

• SYSMOD – The System Modeling Toolbox

• Systems Engineering with SysML/UML (older version)

o Sanford Friedenthal, Alan Moore, Rick Steiner:
A Practical Guide to SysML

• More precise with the syntax, good examples, practices

 Web pages

o http://www.uml-diagrams.org/

• Good references to notations, but only UML
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http://www.uml-diagrams.org/


Relationship Between SysML and UML

UML 2

UML 2

Reuse

(1, 2)

UML

reused by

SysML

UML

not required

by SysML

(UML -

UML4SysML)

SysML

extensions to

UML

SysML
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Requirements Diagram

22



Main Goal of Requirements Diagram

What are the main textual requirements?

What is their hierarchy?
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SysML Example – Requirements
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Requirement
Name

Id

Text
Requirement 

decomposition



The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more 
corresponding requirements

o No extra functionality

25

R1.1

R2.1

R3.2

R1.2 ?
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Relations between Requirements
 Trace

o General trace relationship
o Between requirement and any other model element

 Refine
o Depicts a model element that clarifies a requirement
o Typically a use case or a behavior

 Derive
o A requirement is derived from another requirement by analysis or decision
o Typically at the next level of the system hierarchy

 Copy
o Supports reuse by copying requirements to other namespaces
o Master-slave relation between requirements

 Satisfy
o Depicts a design or implementation model element that satisfies the 

requirement

 Verify
o Used to depict a test case that is used to verify a requirement
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Examples of Relations between Requirements
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Derive

Refine Refine



Traceability of Requirements in SysML Models
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Requirements

Use Cases

Test Cases

Block
diagrams

<<refine>>

<<verify>>

<<satisfy>>



Requirements Relations in Table
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Hierarchical
numbering

Traceability
links



Modeling System Functions with
Use Cases



Use Case Diagrams
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System Context

Who will use the system?  Context diagram

o System 

o Its boundaries

o External entities

o Incoming / outgoing
• Information (data) flow

• Control flow

 What form?

o Whiteboard drawing

o SysML UC diagram
(context diagram)
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SysML notation: Actors and External systems

Actor

34

External system
(anything as a box)

Sensor

Actuator

Environmental
effect

Information
flow



Use cases

Who will use the system and for what?
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System
boundary

Use case

Secondary
actor

Primary
actor



Definition of Use Cases

 Use case (használati eset) captures a main functionality
of the system corresponding to a functional requirement

 UCs describe 

o the typical interactions 

o between the users of a system and 

o the system itself, 

o by providing a narrative of how a system is used

 A set of scenarios tied together by a common user goal

 Language template: Verb + Noun (Unique)!

o Example: Drive train, Switch turnout

M. Fowler: UML Distilled. 
3rd Edition. Addison-Wesley

36



Use Case Descriptions

 Additional textual description to detail use cases
o Preconditions: must hold for the use case to begin

o Postconditions: must hold once the use case has
completed

o Primary flow: the most frequent scenario(s) of the use 
case (aka. main success scenario)

o Alternate flow: less frequent (or not successful)

o Exception flow: not in support of the goals of
the primary flow

 Elaborated behavior in SysML (discussed later)
o Activity diagrams: scenarios with complex control logic

o Interaction diagrams: for message based scenarios
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Definition of Actors
 Actor (aktor, szereplő) is a role that a user plays with 

respect to the system. 
o Primary actor: calls the system to deliver a service
o Secondary actor: the system communicates with them while 

carrying out the service

 An actor is outside the boundary of the system
 Characteristics:

o One person may act as more than one actor 
• Example: The farmer may also act as a laborer who performs the

spraying

o Can be an existing subsystem (and not a person)
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Relations betwen Actors and Use cases

Association: 
• actor initiates or
• participates in interaction
• (rarely between 2 actors)
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A use case may be 
performed by several actors

An actor may perform 
many use cases



Relations between Two Actors
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Actor Generalization: 
• any subactor can perform

use case
• access control (groups)



How to handle complex functionality?

Transport cargo = 
•Operate turnouts
•Drive train
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Refinement with include relation

Base UC

Included 
UC

The included UC 
breaks down the complex
core functionality into 
more elementary steps
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Generalization of UCs

Use Case
Generalization 
(Inheritance)

What happens if 
• the selected route of transportation
is blocked?
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Extend relationship
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The extension UC
Extends core 
functionality by 
handling unusual 
(exceptional) situation

Base UC

Extension 
UC



Overview of UC Relations

Association

• Actor – use case (rarely: actor – actor) 

• an actor initiates (or participates in) the use of the system 

Generalization

• actor – actor OR use case – use case

• a UC (or actor) is more general than another UC or actor

Includes

• use case – use case

• a complex step is divided into elementary steps

• a functionality is used in multiple UCs

Extend

• use case – use case

• a UC may be extended by another UC

• typically solutions for exceptional situations
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Traceability of Use Cases in SysML Models
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Use Cases

Requirements

Block
Diagrams

Activity
Diagrams

<<refine>>

<<satisfy>>

<<refine>>System 
Context

<<refine>>



Best practices of UC analysis



Best practices: Grouping

 Grouping UCs
o Identify functional building blocks

o Group them into packages

o NOTE: related by functionality, 
NOT by role

 Grouping actors:
o Dedicated (top-level) „Actors” package OR

o Keep actors in a package within 
the subsystem they exclusively belong to
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Best practices: Naming and arrangement

 Actors
o Name actors according to their roles and 

avoid using job titles
o Divide complex roles into multiple actors
o Start the diagram by placing the most important actor 

in the top left corner 

 Use Cases
o Use domain specific verbs for UCs
o Avoid technical descriptions –

UCs are frequently for non-technical reader

 Relationships
o Avoid crossing or curved lines when drawing relations
o Use <<extend>> and <<include>> relations „lightly”
o Place them into the appropriate functional block

Main guideline: 
UC diagrams 

should be SIMPLE

49



Summary
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