
Modeling physical properties

Controller, plant and environment model

1

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generation code generation

HW library

Requirements

Fault tolerance
& safety

Platform-based systems design

Learning Objectives

Modeling physical parameters and constraints

•Include physical properties in a model
•Include rules constraining physical properties
•Capture properties and constraints using the SysML language

Joint analysis of the system and the environment

• Modeling the controller, the plant, and the environment

• Capture both continuous-time and discrete time properties

• Identify the connection between the system, the plant, and the
controller

• Analyze system properties and execute simulations using models

• Learn the basic modeling concepts of the Modelica language

Thermal model of an aircraft

6

Copyright:

Controller, Plant, and Environment

 Typical system control loop

 Co-designing controller and the plant would be
the ideal setting

7

Controller

Environment

Plant

Disturbance

Output
Feedback

Reference signals
and settings

Important step of controller design:
process identification based on measurements

Controller design

 Controller functional design using blocks

o BDD: defines element hierarchy and containment

o IBD: template for component internal structure

 Challenge: validate the design of the controller

o On-site testing and calibration can be

• Expensive (time + cost)

• Dangerous

o Instead:

• create plant model and environment model with physical
properties and

• run simulations

8

Example railway system controller

 Controller aims to

o monitor the trains

o apply brakes when necessary

• too close to each other

• prevent derailment at turnouts

 Parameters influencing braking distance

o Weather conditions

o Speed

o Landscape

o … (anything else?)

9

Railway
system

controller

Railway
infrastructure

Environmental
conditions

Train status

Train
destination

Thermal model of an aircraft

11

Copyright:

Constraints and physical parameters
in SysML

Constraint blocks

12

Constraint blocks

 Constraint: equations with parameters bound to
the properties of the system

 Constraint block: supports the definition and the
reuse of constraints. It holds

o a set of parameters and

o an equation constraining the parameters

13

Name of the
constraint

Equation – no dependency
between variables

Parameters
with types

May have
language

specification

Assignments and equations

 An assignment in a typical programming language is a
causal connection, where the left hand side is the
dependent variable:

y := x + 3

 An acausal connection is like a mathematical
equation; there is no notion of inputs/outputs. So

y = x + 3

 and
y - 3 – x = 0

 have the same meaning.
o If any of the variables has a new value, it enforces that the

other variables change accordingly.

14

Constraint definition

15

 Composition is used to define complex constraints
from simple equations

Hierarchy
depicted in a BDD

Parametric diagram

Specification of bindings between system parameters

16

Parametric Diagram (PAR)

17

Parameter bindings

18

 Goal: describe the application of constraints in a
particular context

Values bound
together are equal

Types in a binding
must be compatible

Applications of parametrics

 Parametric specification

o Define parametric relationships in the system structure

 Parametric analysis

o Evaluating constraints on the system parameters to
calculate values and margins for a given context

o Checking design alternatives

o Tool support: ParaMagic plug-in for MagicDraw

 There are modeling standards with better support
for this modeling aspect…

o …such as Modelica

19

Modelica

A language for modeling and simulating
complex physical systems

20

Overview of Modelica

 Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

 The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

 Implementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

 Modeling and simulation IDE: OpenModelica

21

Example: modeling a simple pendulum

 Simple pendulum

 Behavior of the pendulum as a function of time:

𝜃 (𝑡)
𝜔 𝑡

=
𝜔(𝑡)

−
𝑔

𝐿
𝜃(𝑡)

22

Ɵ L

ω
m

Modelica code for simple pendulum

23

model SimplePendulum

 parameter Real L=2.0;
 constant Real g=9.81;
 Real theta (each start = 1.0);
 Real omega;
equation
 der(theta) = omega;
 der(omega) = -(g/L)*theta;

 end SimplePendulum;

Model name Continuous time
variables, constants

Initial value

(Differential) equations

Pendulum simulation results

24

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

25

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

26

Definition in Modelica:
equation

 phi = flange_a.phi;
 phi = flange_b.phi;
 w = der(phi);
 a = der(w);

 J*a = flange_a.tau + flange_b.tau;

Definition in Modelica:
equation

 auxiliary[1] = x[1];

 for i in 1:n - 1 loop

 auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]];

 end for;

 y = pre(auxiliary[n]);

Modelica and Simulation

 Simulating a model means to calculate the values
of its variables at certain time instants

 Advantages

o Observing dangerous/expensive bevaviour at low cost
with no risks

o Resolves scaling issues (size, duration)

 Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

27

Example plant model – train brakes

 Physical model for braking system carrying a mass

 Graphical notation in OpenModelicaEditor

28

Icon

Connection

Port

Example plant model – train brakes

 Physical model for braking system carrying a given
mass

29

Example plant model – train brakes

30

model BrakeExample
 Brake brake(

 fn_max=1,
 useSupport=false);
 Mass mass1(
 m=1,

 s(fixed=true),
 v(start=1, fixed=true));
 Step step(

 startTime=0.1,

 height=2);
equation
 connect(mass1.flange_b, brake.flange_a);
 connect(step.y, brake.f_normalized);

 end BrakeExample;

Brake, Mass, and Step are inbuilt
classes to Modelica Library

Can describe both causal
and acausal connections

between ports

 Plot values w.r.t. time (displacement)

Brake times and distance

31

 X-Y plot (speed w.r.t. displacement)

The mass stopped
after 1s at 0.6m

The speed reduced to
0m/s after the mass

moved 0.6m

Summary

 Complex system design requires modeling of
physical parameters

o SysML constraint block, parametric diagram

 Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

oModeling language for this purpose: Modelica

 Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive

32

