
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform model, allocation,
integrated models and their analysis

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

System properties

 Functional requirements  Functional
properties: functions that the system is able to
perform
o including how the system behaves while operating –

also called operational properties.

 Extra-functional requirements  Extra-
functional properties: they do not have a bearing
on the functionality of the system, but describe
attributes, constraints, performance
considerations, design, quality of service,
environmental considerations, failure and
recovery.

4

Approach

5

Functional model

Additional
information,
configuration

Integrated model;
ready for validation

Validation of
functional
requirements

Validation of
extra-functional
requirements

Extra-functional properties
 Dependability: the ability to deliver service that can

justifiably be trusted.
 Attributes of dependability:

o availability: readiness for correct service.
o reliability: continuity of correct service.
o safety: absence of catastrophic consequences on the user(s)

and the environment.
o integrity: absence of improper system alterations.
o maintainability: ability to undergo modifications and repairs

 Performability: If the performance of a computing system
is "degradable" performance and reliability issues must be
dealt with simultaneously in the process of evaluating
system effectiveness. For this purpose, a unified measure,
called "performability" is introduced and the foundations of
performability modeling and evaluation are established.

6

Example: dependability analysis taxonomy

7

Modeling

Simulation

Analytical
solution

Non state space
based methods

State space based
methods

Reliability block
diagram

Fault tree

Markov chains

Stochastic Petri
nets

…
…

Why platform models are needed

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?

9

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?  in Software!

10

Runtime platform

 Systems provide functions

 Functions are defined using

o Functional models

o Component behavior models

 How to realize these functions?  in Software!

o Maybe in hardware? (e.g., sensors, GPU, FPGA, etc.)

oWhat will execute our software functions?

o How will they be able to communicate

11

Platform model

 The platform model specifies the physical building
blocks of the execution platform

o the execution resources

• memory, CPU, etc.

o the available communication resources

• Network interfaces, routers, etc.

o the properties of the used HW elements

• Weight

• Availability

• Size

• etc.

12

Defining the platform model I.

 Resource capturing phase

o Specification of reusable hardware entities

• Coming from HW libraries/technical dictionaries

• Defined by HW designers within the project

atomic hardware units of the execution platform
– Embedded systems: Processor, Communication controller

– Define hardware properties

13

Defining the platform model II.

 Platform composition phase

o (Already available HW design  only modifications)

o Definition from bottom-up based on the atomic
building blocks

 Similar modeling task as the functional
component definition BUT

o Connecting blocks == physical linkage

o Part-whole relationship == physical containment

o Physical HW properties are needed to be taken into
consideration

• Size, weight, number of ports, etc.

14

Defining the platform model II.

15

Functions to Platform allocation

Usually HW-SW allocation

Allocation example

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

Functions

System

Display

AirCond

Panel

Supply fresh air

Supply hot air

Monitor
temperature

Set
temperature

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

Only one function per
partition

2

4

2

2

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

2

4

Modify HW architecture
for more resources

2

2

Allocation example – communication channels

SW functionality

1

2

6

4

3

5

HW Communication
channels

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

System

Display

AirCond

Panel

AFDX

ARINC 429

ARINC 653
ports

One possible
candidate is

selected

2

2

Allocation

 Input:
o Functional model + platform model

o Additional non-functional constraints

 Output:
o System Architecture

 The System Architecture defines for each instance
of a Function
o where and when to execute

owhen to communicate

o and on which bus

21

Where and when to execute

 Platform (HW)

o Available memory

o CPU performance

o Redundancy

 Functional (SW)

o Memory required

o Execution window required

o Safety aspects
• E.g., criticality levels

22

 Allocate the functions to their designated execution resource

o Processor, GPU, server, node, etc.

 Schedule the execution of functions

o Based on their required execution window

• Major driver of the allocation process

 Constraints (usually) taken into consideration

When to communicate and on which bus
 Allocate Function model level communication means to

platform communication resources
o Information flow to bus mapping
o Data/message mapping to platform representation
o Scheduling

• Messages, buses, routers
• Major driver of the allocation process

o Constraints (usually) taken into consideration

23

 Platform (HW)
o Connectivity

• comm. architecture
• Routing
• Supported modes

o Bandwidth & Speed
o Precision

• Data mapping

o Redundancy
• Independent paths

 Functional (SW)
o Message properties

• size

• priority

o Communication mode

• 1-1, 1-n, n-n

o Safety aspects

• WCET

Additional aspects of the allocation

 Multi-level allocation
o Complexity is handled on multiple abstraction-level 

allocation is handled between all hierarchies

 Resulting System Architectures are used for validating
system level functional/non-functional aspects
o Timing requirements, safety requirements, etc.

o Used methods: Static checks, simulations, HiL, etc.

 No perfect allocation Multi-dimension
optimization problem
o Design Space Exploration

24

Modeling the platform in SysML

Platform modeling techniques

 Running platform is composed of existing (hardware)
elements

 Approach: bottom-up using composition

 Subsystems can be tested one-by-one

 There are always some working parts during development

 Exact roles of the subsystems are revealed late

System

Subsystems

Subsytems of subsystems

26

Platform models in SysML

 Models composed of blocks  BDD, IBD are used.

27

Role
multiplicity is

set to 1

Modeling allocation in SysML

Allocation example: railway system

 Functional structure

 Platform structure

29

Allocation example: railway system

 Functional structure

 Platform structure

30

Allocation example: railway system

 Functional structure

 Platform structure

31

Allocation example: railway system

 Functional structure

 Platform structure

32

The allocation relation in SysML

 Structural allocation: usage

33

Specifies logical to
physical allocation

Fu
n

ctio
n

s
P

latfo
rm

The allocation relation in SysML

 Structural allocation: definition

o Wherever a BBB is used in the system, a zone monitor
and an accident prevention subsystem is assumed to
be allocated to it

34

Fu
n

ctio
n

s
P

latfo
rm

The allocation relation in SysML

 Functional allocation: definition

o A zone actuator behaves as it is described in the
allocated statemachine.

35

Functional
model

Platform model

Architecture
model

Component
behav. model

HW/SW
allocation

HW library

Fault tolerance
& safety

SysML allocation matrix

36

Columns: functional elements

Rows: platform elements

SysML allocation matrix

37

Arrow pointing downward:
function to platform allocation

(colum to row)

SysML allocation matrix

38

Multiple platform elements run
the instances of the function

SysML allocation matrix

39

A logical connection is allocated to
multiple elements in the platform

SysML allocation matrix

40

A logical connection is allocated to
multiple elements in the platform

Allocation constraints

 Platform element capabilities

o What kind of resources does the platform element
have?

 Realization of connections

o Are the connections between the functions supported
by the platform?

 Standards and additional well-formedness rules

o Such as „critical and non-critical functions shall not run
on the same platform element”.

41

Advantages of allocation matrices

 A function cannot be deployed to the same device
twice.

 Allocation of the logical connections can be
validated by examining endpoints and continuity
of the corresponding platform connection.

 By examining the safety levels of the allocated
functions row by row, critical and non-critical
functions cannot be allocated to the same device.

42

Best practices / Goals

 Avoid single point of failures

 Fault tolerant design patterns

o See previous lecture on Safety-critical systems:
Architecture

 Cost efficiency

o Weight

o Price

43

Extrafunctional properties

Analysis of extra-functional properties of a service

System properties (repetition)

 Functional requirements  Functional
properties: functions that the system is able to
perform
o including how the system behaves while operating –

also called operational properties.

 Extra-functional requirements  Extra-
functional properties: they do not have a bearing
on the functionality of the system, but describe
attributes, constraints, performance
considerations, design, quality of service,
environmental considerations, failure and
recovery.

45

Case study

Modeling IT infrastructure using ArchiMate

IT system and infrastructure

 Challenge: find a modeling language that is not
too general neither too specific for a given domain

 Applies multi-level allocation

47

ArchiMate – infrastructure modeling

 The ArchiMate language defines three main layers
o The Business Layer offers products and services to

external customers, which are realized in the
organization by business processes performed by
business actors.

o The Application Layer supports the business layer with
application services which are realized by (software)
applications.

o The Technology Layer offers infrastructure services
(e.g., processing, storage, and communication
services) needed to run applications, realized by
computer and communication hardware and system
software.

48

ArchiMate example – big picture

 An example of a fictional Insurance company.

49

Business layer

Application layer

Technology layer

ArchiMate example: fictional Insurance company

 Business layer

50

Used by

Assignment

Realisation

Triggering

ArchiMate example: fictional Insurance company

 Application layer

51

Used by

Realisation

ArchiMate example: fictional Insurance company

 Technology layer

52

Association

Realisation

ArchiMate example – big picture

53

Used by
Used by –

across layers

Case study

Analysis of extra-functional properties of a service

Validation of service configurations

 Performability analysis

o „Performability = Performance + Reliability”

 What happens in case of a failure?

o E.g. the middleware responsible for reliable messaging
resends the lost message  the guaranteed response
time may increase (e.g. too low timeout  several
false resends).

 What is the price of reliability? (performance-
reliability tradeoff)

 How to set SLA parameters?

55

What do we model from all of this?

 Abstract behavior

o Server

o Client

 Message handling parameters (derived)

o Method for handling messages

o Number of resends

o Parameters of send, resend, ack

• (exponential distribution)

56

 Describes the platform

 Its parameters are included in the configuration
model

Server

ServerIdle

Processing

?send

?resend

!ack

Client

ClientIdle

Sent1x

Fail1x

Sent2x Sent3x

Fail2x Failure

Success

!send !resend !resend

timeout timeout timeout

reset

?ack ?ack ?ack

!ack

Middleware model

send

resend

ack

57

Analysis results: utilization

Analysis in steady-state

How much time does error handling take?

Success

Failure

MsgSent1

MsgSent2

MsgSent3

Fail1

ClientIdle

Fail2

~23%

58

Sensitivity analysis results

Sensitivity analysis: what to change?

Probability of system level failures with respect to timing
parameters of „resend”?

An increase in the number of successful ACK
messages significantly lowers the number of failures

59

Case study

Application of DSE for allocation

Motivating example: Smart Building

 Reconfiguration of supervising cyber-physical
systems (CPS)

o Offices to rent with highly
configurable services

o Services to deploy on both
embedded and virtual
computational units

o Requests may change over
time

o Certain faulty devices may no longer function

61

Design Space Exploration (DSE)

 Special state space exploration

o Potentially infinite state space

o cannot put upper bound on the number of model
elements used in a design candidate (elements are
created and deleted during exploration).

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

62

Rule-based Design Space Exploration

 Objectives : complex model metrics calculated by model
queries

 Cost calculations may depend on the seq. of transf. rules

 Multiple objectives

Design Space Exploration

Seq. of Transf.
Rules 1

Seq. of Transf.
Rules 2

Seq. of Transf.
Rules 3

Seq. of Transf.
Rules 4

Model queries as
Goals

Model queries as
Constraints

Transf. rules as
Operations

Initial Model as a
graph

Modified model

Operation

Initial model

Solution model

Constraints
violated

Goals
satisfied

63

Motivating example: Smart Building

64

Motivating example: Smart Building

Smart building: constraints

 Constraints

o Graph patterns to search for with model queries

o For smart buildings

• Constraints define valid or invalid configurations

Positive Positive Positive Negative

66

count

E:Requirement

unsatisfiedReq(E)

A:ApplInst

instances

M

check: R.count > M

R:Requestreqs

AI:ApplInst

applInstStopped(AI)

check:
R.state != running

AI:ApplInst

unallocatedAppl(AI)

HI:HostInst

hostNEG R:ResReq

AT:ApplType

HT:HostType

type

instance

reqs

hostType

AI:ApplInst

extraHost(H)

HI:HostInst

hostNEG

Smart building: constraints con’t

 Constraints

o Constraint fulfillment

𝐶𝑜𝑛𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 𝑀 =

∀𝑝∈𝑃

𝑤𝑝 ×𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑝,𝑀)

𝐶𝑜𝑛𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 𝑀 =
1 × 2 + 0 × 3 + 0 × 4 + 1 × −1 = 1

Positive for well-formedness constraints
Negative for ill-formedness constraints

67

Smart building: rules

E:Requirement

rule newApplInst(E)

find
unsatisfiedReq(E)

NEW

AI:ApplInst

instances

2

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostTypeHI:HostInst

type

reqs

hostType

instances

host

check: AI.state==”STOPPED” &&
HN.availMem>RR.reqMem &&
HN.availHdd>RR.reqHdd

rule move(AI,HI,RR)

action:
HI.availMem +=RR.reqMem;
HI.availHdd +=RR.reqHdd;
HN.availMem -=RR.reqMem;
HN.availHdd -=RR.reqHdd;

HN:HostInst

host

NEW DEL

4

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostTypeHI:HostInst

type

reqs

hostType

instances

NEG

host NEW

check: AI.state==”STOPPED” &&
HI.availMem>RR.reqMem &&
HI.availHdd>RR.reqHdd

rule allocate(AI,HI,RR)

action:
HI.availMem -=RR.reqMem;
HI.availHdd -=RR.reqHdd;

3

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostTypeHI:HostInst

type

reqs

hostType

instances

DEL

host

check: AI.state==”STOPPED”

rule delete(AI,HI,RR)

action:
HI.availMem +=RR.reqMem;
HI.availHdd +=RR.reqHdd;

3

rule stop(AI)

check: AI.state==”RUN”

AI:ApplInst1

action: AI.state=”STOPPED”

HT:HostType

rule newHostInst(HT)

NEW

HI:HostInst

instances

?

action:
HI.availMem=HT.defMem
HI.availHdd=HT.defHdd

rule start(AI)

check: AI.state==”STOPPED”

AI:ApplInst1

action: AI.state=”RUN”

HI:HostInst
host

Smart Building: configuration model
Services and Requests

(a) Services

(b) Two examples on company requests

Package Services Appl Types

Basic Fire Alarm Smoke Detect
MeasureTemp

Comfort + Air Cond + SetTemp

Secure + Security +MotionCheck
+VideoRecord

Max +HeatMap
R Packages AppInst HostInst

1 Comfort (2)
Basic(1)

3xSD, 2xMT,
2xST

3xSS,6xTS,
2xCS,

2 Max (2) 2xSD, 6xMT,
2xST, 2xMC,
2xVR, 2xHM

2xSS,6xTS,
8xCS, 2xIC,
2xVC,

Case study

Schedule execution on a distributed platform

Scheduling

 Platform model: computation nodes and
communication channels between them.

 Algorithm model: data-flow graph with
operations as vertices and data-dependencies as
edges.

 Challenge: schedule operations on the
computation nodes for execution

o Network communication takes time

o Local results can be accessed instantly

72

PlatformDataflow/ALG

Example [A. Girault]

I OA

B

C

D

E

F

G

P1 P2

P3

L13

L12

L23

WCET I A B C D E F G O

P1 10 20 30 20 30 10 20 14 14

P2 13 15 10 30 17 12 25 10 X

P3 X 10 15 10 30 20 10 15 18

Src/Trg P1 P2 P3

P1 0 15 10

P2 15 0 20

P3 10 20 0

1) Create schedule (when and where to run what?)
2) Create fault-tolerant (FT) schedule if at most 1 proc may fail

Naive solution (no FT)
P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10

A 10 30 30 45

B 30 60

C 60 80

D 45 62

E 74 89 62 74

F 80 100

G 100 114

O 114 128

P1 P2

P3L13

L12

L23

I A B C F G O D E

A D

EG

P1

I A C

FT Allocation and Schedule
P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10

A 10 30 30 45

B 30 60

C 60 80

D 45 62

E 74 89 62 74

F 80 100

G 100 114

O 114 128

P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10 0 13

A 10 30 13 28 30 40

B 38 53 28 38 40 55

C 30 50 55 65

D 50 80 38 55 55 75

E 67 82 55 67 65 85

F 80 100 85 95

G 100 114 95 110

O 114 128 110 128

P2

P3
L13

L12

L23

EG BFD F G O

B C E F G O

D
G

A
B

A C E F G

C

Summary

76

