Platform model, allocation,
integrated models and their analysis

Systems Engineering BSc Course

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform-based systems design

e Requirements .

/4 \

--_———————

Traceability

Component § Architecture
behav. model model

. L I I I J .
code generation code generation

Config. file

Config. model

Verification and Validation

Compiler
Linker

System properties

= Functional requirements =2 Functional
properties: functions that the system is able to
perform

o including how the system behaves while operating —
also called operational properties.

= Extra-functional requirements = Extra-
functional properties: they do not have a bearing
on the functionality of the system, but describe
attributes, constraints, performance
considerations, design, quality of service,
environmental considerations, failure and

recovery.

Approach

Validation of
functional
requirements
Functional MOde| gttt >

Integrated model,;
ready for validation Validation of

Additional extra-functional

information, requirements
configuration | >

Extra-functional properties

= Dependability: the ability to deliver service that can
justifiably be trusted.
= Attributes of dependability:
o availability: readiness for correct service.
o reliability: continuity of correct service.

o safety: absence of catastrophic consequences on the user(s)
and the environment.

o integrity: absence of improper system alterations.
o maintainability: ability to undergo modifications and repairs

= Performability: If the performance of a computing system
is "degradable” performance and reliability issues must be
dealt with simultaneously in the process of evaluating
system effectiveness. For this purpose, a unified measure,
called "performability" is introduced and the foundations of
performability modeling and evaluation are established.

Example: dependability analysis taxonomy

Simulation

Reliability block
diagram

Non state space

Modelin
: based methods

Fault tree

Analytical

solution State space based
methods

Markov chains

Stochastic Petri
nets

Why platform models are needed

Runtime platform

= Systems provide functions

" Functions are defined using
o Functional models
o Component behavior models

= How to realize these functions?

Runtime platform

= Systems provide functions

" Functions are defined using
o Functional models
o Component behavior models

= How to realize these functions? = in Software!

Runtime platform

= Systems provide functions

" Functions are defined using
o Functional models
o Component behavior models

= How to realize these functions? = in Software!
o Maybe in hardware? (e.g., sensors, GPU, FPGA, etc.)
o What will execute our software functions?

o How will they be able to communicate

Platform model

" The platform model specifies the physical building
blocks of the execution platform

o the execution resources
* memory, CPU, etc.

o the available communication resources

* Network interfaces, routers, etc.

o the properties of the used HW elements
* Weight
* Availability
* Size

* efc.

Defining the platform model |.

= Resource capturing phase

o Specification of reusable hardware entities
e Coming from HW libraries/technical dictionaries
* Defined by HW designers within the project
—~atomic hardware units of the execution platform

— Embedded systems: Processor, Communication controller

— Define hardware properties / \
SmallLib

Routers

Passive Sensors

Windriver

Thermal sensor Generic
Windriver
Router

WR 101
(2-4 dataports)

o /

Defining the platform model II.

= Platform composition phase
o (Already available HW design = only modifications)

o Definition from bottom-up based on the atomic
building blocks

= Similar modeling task as the functional
component definition BUT
o Connecting blocks == physical linkage
o Part-whole relationship == physical containment

o Physical HW properties are needed to be taken into
consideration

* Size, weight, number of ports, etc.

Defining the platform model II.

Ga” Passive Sensors \
Lib
 ~1 Thermal sensor
-
-
- - -
- -
- Routers
- -
- - .
’ . .
Avionics Power Supply 1 ‘—,rﬁ, Windriver
- ’ 3
simple DMR = L Generic
P - - h Power bus 1 j - - WRi,ndriver
- t
ThermalSens ActiveSens GenAct _--T e
— -
|—¢ -1 | WR101
r g - _ |~ 7 (2-4 dataports)
-
-
Chassis 1 GenWR Chassis 2 L
PS PS
< l]
—
Comm. _—
Federated bridge Federated
RTOS 1 — || WRI1011 / RTOS 2
Proc Unit 1 EREETY Proc unit 2

Functions to Platform allocation

Usually HW-SW allocation

Allocation example

Functions

Pack™=

Controller 'Supply fresh air

Zone— (§

Controller Supplv hot air Pack |
ppy Controller Rack | Aft Zone

i

Monitor 1

_ temperature '

AirCond] I o

Pane: = "¢ -

Set Pack !

Pack |
temperature Controller) | Forward

| | | Zone
Zone
Controller

System
Display \,‘

A||r "' Flight

Deck

Conditioning
panel

e

MUEGYETEM 176Gz

Allocation example — functions to partitions

Functions N
Partitions
Pack (1) Q Federated
Controller e RTOS
Zone
Controller e Pack i | f
o Controller I Aft Zone
e i
ARINC 653 !
RTOS , I
AirCond |
Panel e 1 ——
c P,?Ck” Pack ||
ontrofer) | Forward
I | | Zone
Zone
Controller
Constraints @ .
.] Dieplay I t‘ I Flight
| Only one function per Air Deck
partition Conditioning
panel

MUEGTYETEM 1762

Allocation example — functions to partitions

SW functions

Partitions
Pack (1) Federated
Controller e RTOS
Zone
Controller e Pack i |
o Controller I Aft Zone
e i
ARINC 653 |
RTOS I
AirCond |
Panel e 1 -
c P,?Ck” Pack ||
ontrofer) | Forward
I | | Zone
Zone
Controller
Constraints @ .
Display
I t Flight
I i Air Deck
Modify HW architecture Conditioning
for more resources | vanel

MUEGTYETEM 1762

Allocation example — communication channels

SW functionality HW Communication
channels —

P Pack

I “ontroller

One possible
candidate is
selected

Controller

Pack
Controller

Zone

ARINC 653
Controller

ports :

System

Displ

Isplay I t‘i" Flight
Air Deck

Conditioning
panel

Pack

Forward
Zone

e s

MUEGYETEM 176Gz

Allocation

= [nput:
o Functional model + platform model
o Additional non-functional constraints
= Qutput:
o System Architecture

"= The System Architecture defines for each instance
of a Function

o where and when to execute
o when to communicate
o and on which bus

Where and when to execute

= Allocate the functions to their designated execution resource

o Processor, GPU, server, node, etc.

= Schedule the execution of functions

o Based on their required execution window
* Major driver of the allocation process

= Constraints (usually) taken into consideration

= Platform (HW) = Functional (SW)
o Available memory o Memory required
o CPU performance o Execution window required
o Redundancy o Safety aspects

* E.g., criticality levels

When to communicate and on which bus

= Allocate Function model level communication means to
platform communication resources

o Information flow to bus mapping
o Data/message mapping to platform representation
o Scheduling

* Messages, buses, routers
* Major driver of the allocation process

o Constraints (usually) taken into consideration

= Platform (HW) = Functional (SW)
o Connectivity

« comm. architecture o Message properties

* Routing * sjze
* Supported modes * priority
o Bandwidth & Speed N
. o Communication mode
o Precision
 Data mapping * 1-1,1-n, n-n
o Redundancy o Safety aspects

* Independent paths « WCET

Additional aspects of the allocation

= Multi-level allocation

o Complexity is handled on multiple abstraction-level 2
allocation is handled between all hierarchies

" Resulting System Architectures are used for validating
system level functional/non-functional aspects

o Timing requirements, safety requirements, etc.
o Used methods: Static checks, simulations, Hil, etc.

= No perfect allocation = Multi-dimension
optimization problem

o Design Space Exploration

Modeling the platform in SysML

Platform modeling techniques

= Running platform is composed of existing (hardware)
elements

= Approach: bottom-up using composition
© Subsystems can be tested one-by-one

© There are always some working parts during development
@ Exact roles of the subsystems are revealed late

System

i)

Subsystems

Platform models in SysML

= Models composed of blocks = BDD, IBD are used.

bdd [FPackage] & - Platform architecture [Railway platform structure J_J

wblocks

Railway System
‘ ‘ segmentOccupationZensor
virtgali i
controller router camera microcomputer
sblocks wblocks wblocks wblocks wblocks ablocks
VirtualMachine Controller Router Camera Microcomputer SegmentOccupationSensor

ibd [Block] RailwaySystem|[Railway Eﬂ}rstemlj R0|e
: Router 1 11 1
: PCAdapter [[[mUItIpIICIty 1S

[] networkS |network3 |networkd setto1

UzB

Usg netwaork network J_n‘etwurk
L] L] |

LE » VirtualMachine zone1BBB : BeagleBoneBlack

Modeling allocation in SysML

Allocation example: railway system

= Functional structure

ibd [Block] Zone Controller[Zene Controller fragment J_J

actuator : Zone Actuator

monitor : Zone Monitor
1

zeneActuatorPort : ZoneControllerPort

actuatorPort . ZoneActuatorPort

maniterPort : ZoneMeonitorPort

maniterPort : ZoneMonitoringPort

selfTestMonitorPort : SelfTestMonitorPort

selfTestMonitorPort ; ~SelfTestMonitorPort

L1
accident prevention : Zone Accident Prevention Subsystem

L1

ibd [Block] RailwaySystem | Railway System fragmentlj

zone1BBB : BeagleBoneBlack
[]

zoneld : Arduino
[

zone3BBB : BeagleBoneBlack
[]

zonedd : Arduino
[]

I—Fetwurk

network

network1 network?

LlT'llatwurk

LF&twurk

network3 networks

L

L |
: Router

L

= Platform structure

Allocation example: railway system

= Functional structure

ibd [Block] Zone Controller[Zene Controller fragment J_J

actuator : Zone Actuator monitor : Zone Monitor
[[
zuneA&lﬂturFm - &ggeControllerPort monitorPart - ZoneMonitorPort selfTestMoniterPort : SelfTestMonitorPort
~
\ S o
actuatorPort : &n eActuatorPort mcﬂu rPort : ZoneMonitoringPort selfTestMonitorPort ; ~SelfTestMonitorPort
L1 }t L1 - L1
accidemt prevention : Zone Accident Preveh’on&bsystem
N\ ~
~
. == — .
ibd [Block] RailwaySystem[Railway System fragn\ntlj o
~
by T~
zone1BBB : BeagleBoneBlack zonelh : Arduino zone3BBB : BeagleBoneBlack zonedf @ Arduino
[[[[1

I—Fetwurk network LlT'llatwurk LF&twurk

network1 network? network3 networks

| L | L
: Router

= Platform structure

Allocation example: railway system

= Functional structure

ibd [Block] Zone Controller[Zene Controller fragment J_J
actuator : Zone Actuator monitor : Zone Monitor
[/t‘ [
zuneA&lﬂturFm - &ggeControllerPort mun'rturP%: neMonitgrPort selfTestMoniterPort : SelfTestMonitorPort
~
\ ~y 4
actuatorPort : &n eActuatorPort mcﬂu rPort : Euner.mn'rtur\gPurt selfTestMonitorPort | ~SelfTestMonitorPort
L1 L1 - L1
a{:u:idE}t preveyorﬁone Accident Preveh’on&bsy‘tem
IS o\ -
L =
. T e .
ibd [Block] RailwaySysterg{ Hallyyﬁrstem fragnignt lJ ~ ~ - ~ ~
zone1BBB : BeagleBoneBlack zonelh : Arduino zone3BBB : BeagleBoneBlack zonedf @ Arduino
[[[[1

I—Fetwurk network LlT'llatwurk LF&twurk

network1 network? network3 networks

| L | L
: Router

= Platform structure

Allocation example: railway system

= Functional structure

ibd [Block] Zone Controller[Zene Controller fragment J_J
actuator : Zone Actuator monitor : Zone Monitor
[/t‘ [
zuneA&lﬂturFm - &ggeControllerPort mun'rturP%: neMonitgrPort selfTestMoniterPort : SelfTestMonitorPort
~
\ ~y 4
ﬂdus{#brt : &neActuaturF‘urt mcﬂurPurt : Euner.mn'rtur\gPurt selfTestMonitorPort | ~SelfTestMonitorPort
h
L1 e * (L1 - ‘ L1
) accide preveyo : Zone Accident Preveﬂ’on&bsy tem
\ 'S
! - i — i
ibd [Block] RailwaySysterg{ Hallyyﬁrstem fragnignt L/ &, ™= ~ \ ~ -~
-~
zone1BBB : BeagleBoneBlack \l zonelh : Arduino « ZonelBBB : BeagleBonebBlack zonedf @ Arduino
[

N
[L | [] []
LI#etwurk \ network Lﬁ&twurk TﬂtWUrk

\
netw ua network? network3 Jg‘etwurkﬁ-
[- | L= il

: Router

= Platform structure

The allocation relation in SysML

= Structural allocation: usage

| ibd [Block] Allocation specification [Structural allocation lJ

zone : Zone Controller
I 1
actuator : Zone Actuator | monitor : Zone Monitor -n
1] I 1] ! cC
zoeneActuaterPort : ZoneCeontrollerPort | moniterPort : Zur|&r.1c|niturPurt rPort g
| | =
actuaterPort : ZoneActuatorPort | monitorPort : Zur|er.1|:|nituringPurt (@)
L . L1 L1 a
| | accidentpreventiot'l:ZoneAccidentPreventiL}n Subsystem
| |
il T } }
| | |
1
[I | |wallocaten -fo I . I
L — Specities logical to
| ' | | . .
| h | allocat
¥ o physical allocation
| adllocaten | |
| 1,
I I 1 I I
| ' | | |
| | | railwa',r: Railway System
|1
| zallocates " Ay .
I“E‘”UFﬂtEn zone1BBA : BeagleBoneBlack zoneiA : Arduino zone3BBB : BeagleBoneBlack zonedA : Arduino
. 7 . 7 7 9
I network network network network Q
chllocates o
L e)
@]
| L — — _ - — — -
| network1 network2 |network3 networks 3
[[1
| LI L L L1
- — — 0 - — — — — — = : Router

The allocation relation in SysML

= Structural allocation: definition

bdd [Package] 7 - Allecation [Structural allecation - definition J_J

-n

c

sblocks xblocks 2
Zone Monitor LZone Accident Prevention Subsystem g
, I S

| 7

zallocates | zallocates

W W A
xblocks g’h

BeagleBoneBlack (@)

=

3

o Wherever a BBB is used in the system, a zone monitor
and an accident prevention subsystem is assumed to
be allocated to it

The allocation relation in SysML

= Functional allocation: definition

bdd [Package] 7 - Allocation [Functional allocation J_J

wstatemachines wallocate:s awblocks

Lone actuator - Zone Actuator

o A zone actuator behaves as it is described in the
allocated statemachine.

HW/SW
allocation

Component Architecture
behav. model model

SysML allocation matrix

E.E Zone Controller ...

Columns: functional elements

Rows: platform elements

B +turnoutActuatorPort : TurnoutActuatorPork:
B +zoneMonitorPort : ZoneMonitorPork e

8 +accident prevention : Zone Accident Prev...
B +segmentActuatorPort : SegmentActuator...

B +ackuaktor : fone Acktuator
H +monitor : Fone Monitor

- RailwaySystem <
- [H : Router

- [H +zonelh : Arduino
- [H +zonelBBB : BeagleBoneBlack e e

- [E +zone3A : Arduino & ¢
«[H +zone3BBB : BeagleBoneBlack & e

-+ Connector[network - network3]
-+ Connector[network - network2]
-+ Connector[network - network1)
- T Connector[network - networké&)

" +* Connector[actuatorPort - zoneActuatorPort]-

l.',\

l;\

K\
~

NSNS

SysML allocation matrix

E.E Zone Controller ...

Arrow pointing downward:
function to platform allocation
(colum to row)

B +turnoutActuatorPort : TurnoutActuatorPork:
B +zoneMonitorPort : ZoneMonitorPork e

8 +accident prevention : Zone Accident Prev...
B +segmentActuatorPort : SegmentActuator...

B +ackuaktor : fone Acktuator
H +monitor : Fone Monitor

- RailwaySystem <
- [H : Router

- [H +zonelh : Arduino
- [H +zonelBBB : BeagleBoneBlack e e

- [E +zone3A : Arduino & ¢
«[H +zone3BBB : BeagleBoneBlack & e

-+ Connector[network - network3]
-+ Connector[network - network2]
-+ Connector[network - network1)
- T Connector[network - networké&)

" +* Connector[actuatorPort - zoneActuatorPort]-

l.',\

l;\

K\
~

NSNS

SysML allocation matrix

B. E Zone Cuntruller ---------- :

>
u
F
&
kel
E
]
=
L]
L

Multiple platform elements run :
the instances of the function '

+* Connector[actuatorPort - zoneActuatorPort]-

B +turnoutActuatorPort : TurnoutActuatorPort
B +zoneMonitorPort : ZoneMonitorPork e

B +segmentActuatorPort : SegmentActuator...-

B +actuator : fone Actuakor -

| Fl +monitor @

E-E RailwaySystem
i...[7 :Router

I CTTT I I ol H] | ol N]] S el [el 2]] o S

Bl 4 w2

Jf': Cunnectur[netwurk network3]
----- :,fc Connector[network - network2]
----- y‘: Connector[network - network1]
----- ..* Connector[network - network6]

NSNS

SysML allocation matrix

A logical connection is allocated to
multiple elements in the platform

ibd [Block] RailwaySystem[Railway System fragmentlJ

zonelA : Arduino
1

zone1BBB : BeagleBoneBlack zonelBBB : BeagleBoneBlack zonelA : Arduino

] 1

L‘_rllet'\.--'l:lrk

network3 networks

L1

etwork2

: Router

E-E RailwaySystem
: Router
- [H +zonelA : Arduino

- [H +zonelBBB : BeagleBoneBlack ¢ e
- [E +zone3A : Arduino v 'l
- [H +zone3BBB : BeagleBoneBlack v v

-+ Connector[network - network3]

SysML allocation matrix

A logical connection is allocated to
multiple elements in the platform

ibd [Block] RailwaySystem[Railway System fragmentlJ

zone1BBB : BeagleBoneBlack

zonedA : Arduino
1

Fetwurk

zonedA : Arduino zonelBBB : BeagleBoneBlack

network network

network2

L1

networkl

: Router

@ RailwaySystem
: Router

- [H +zonelh : Arduino

- [H +zonelBBB : BeagleBoneBlack

- [H +zone3A : Arduino

«[H +zone3BBB : BeagleBoneBlack

i~ Connector[network - network3] |

-+ Connector[network - network2]

-+ Connector[network - network1)

RN 74

Allocation constraints

= Platform element capabilities

o What kind of resources does the platform element
have?

= Realization of connections

o Are the connections between the functions supported
by the platform?

= Standards and additional well-formedness rules

o Such as ,,critical and non-critical functions shall not run
on the same platform element”.

Advantages of allocation matrices

= A function cannot be deployed to the same device
twice.

= Allocation of the logical connections can be
validated by examining endpoints and continuity
of the corresponding platform connection.

= By examining the safety levels of the allocated
functions row by row, critical and non-critical
functions cannot be allocated to the same device.

Best practices / Goals

= Avoid single point of failures

= Fault tolerant design patterns

o See previous lecture on Safety-critical systems:
Architecture

= Cost efficiency
o Weight
o Price

Extrafunctional properties

Analysis of extra-functional properties of a service

System properties (repetition)

O

= Extra-functional requirements = Extra-
functional properties: they do not have a bearing
on the functionality of the system, but describe
attributes, constraints, performance
considerations, design, quality of service,
environmental considerations, failure and

recovery.

Case study

Modeling IT infrastructure using ArchiMate

IT system and infrastructure

" Challenge: find a modeling language that is not
too general neither too specific for a given domain

O The Open Group

Generic concepts

4 Enterprlse architecture
Application‘—ﬁ concepts
i‘r i

f‘ IlIl,
’ "
S Domain- and company-
‘1‘ specific concepts
L]

more specific

<

= Applies multi-level allocation

ArchiMate — infrastructure modeling

"= The ArchiMate language defines three main layers

o The Business Layer offers products and services to
external customers, which are realized in the
organization by business processes performed by
business actors.

o The Application Layer supports the business layer with
application services which are realized by (software)
applications.

o The Technology Layer offers infrastructure services
(e.g., processing, storage, and communication
services) needed to run applications, realized by
computer and communication hardware and system
software.

ArchiMate example — big picture

= An example of a fictional Insurance company.

External Roles and Actors |

External Bus Servi
o Claim Custom: Claim:
Registrati Infarmati Payment
IneSS yer Servic Semice /) Senice

Business professes and internal actors / roles
i

(! Handle Claim : =)
! ' Insurer CD Archisurance £
Register > Accept = | | Valustes> Pay >

: —

Application layer l

CRM System olicyDate | ommssmm. [| Financial

Technology layer

ArchiMate example: fictional Insurance company

= Business layer

External Roles and Actors

Assignment

Insurant &

External Business Services

Claim Custormer Claims
Registration Information Payment . .
Service Service Service Reallsatlon
AN AN AN

Triggering

| |
| |
| |
| |
| |
: ! : !
Business projcesses and internal actors / roles
| |
| |
| |
i i i
! ' Handle Claim
1 1

Insurer O . Archisurance ¥

Register l::}_._ Accept l::}_._ Valuate=

ArchiMate example: fictional Insurance company

= Application layer

Realisation

External Application Services

£
i
[
i
i
i
[
[
i
i

|

I

i

I
Application :C::-mpunent and Services : |

l

I

CRM Systermn Policy Data Financial
___D._) Management ___[;._) Application

ArchiMate example: fictional Insurance company

= Technology layer

External infrastructure services

Claim Files Customer
Service File Service
.. FAY
’?‘ Realisation :
: :
i i
' l
Infrastructure ! | :
l
i
I
i
l
l
CICS {'jl :
i
MAS File
Server

DBMS (9

Message (5
Clueing

Association

.....
L] EGYETEM ITEEZ

ArchiMate example — big picture

External Roles and Actors |

=
TN

External Business Services

Claim Customer Claims
Registration Information Payment
Service Service Service
AN AN Ay

.
Business projresses and internal acfors / roles
i

Handle Claim =

ik Gl S S Used by —
across layers

Application C and Services
T i
}

; H
CRM System Policy Data Financial
D._, et D._, g

External infrastjucture services |

Claim Files Customer

Service /| File Service
1
1
1
|
Infrastructure
i
]

S
NAS File
Server

Case study

Analysis of extra-functional properties of a service

Validation of service configurations

= Performability analysis

o ,Performability = Performance + Reliability”

= What happens in case of a failure?

o E.g. the middleware responsible for reliable messaging
resends the lost message = the guaranteed response
time may increase (e.g. too low timeout = several
false resends).

= What is the price of reliability? (performance-
reliability tradeoff)

= How to set SLA parameters?

What do we model from all of this?

= Abstract behavior
o Server
o Client

= Message handling parameters (derived)
o Method for handling messages

o Number of resends
o Parameters of send, resend, ack

* (exponential distribution)

Middleware model

= Describes the platform
" |ts parameters are included in the configuration
model

Server Client

i lack |
I?send send

Iresend Iregsend
Isen . timeout
i tim%ﬂ ' tl%out I /

resend
S e

ack ?ack | ?ack | ?ack 1

lack

reset

Analysis results: utilization

Analysis in steady-state
How much time does error handling take?

\
MsgSent2
MsgSentl
Success
MsgSent3 > ~23%

Faill

Fail2
)

Failure

Clientldle

Sensitivity analysis results

Sensitivity analysis: what to change?

Probability of system level failures with respect to timing
parameters of ,resend”?

Parametrised XY Plot
0,375
0,350
0,325
0,200 o .
An increase in the number of successful ACK
022 messages significantly lowers the number of failures
0,200 v
0,175
0,150
0,125
0,100
0,075
0,050
0,025

0,000
0,1¥5 0200 0,225 0,250 0275 0300 0325 0350 0375 0400 0425 0450 D475 0500 0525 0550 0575 0600 0625 0650 0675 0,700

Rate rateAck
— Rate rateTimeout 0,3 —Wateﬂmeuut 0.5 Rate rateTimeout 0,6 — Rate rateTimeout 0,7 Rate rateTimeout 0,8

Rate rateTimeout 0,9

Lilisation: Failure

Case study

Application of DSE for allocation

Motivating example: Smart Building

= Reconfiguration of supervising cyber-physical
systems (CPS)

o Offices to rent with highly
configurable services

o Services to deploy on both
embedded and virtual
computational units

o Requests may change over
time

o Certain faulty devices may no longer function

Design Space Exploration (DSE)

Goals

Global

—>
Constraints 2
Design Space Exploration
—>
—>

Operations

Initial Design

Design
Alternative 1
Design
Alternative 2
Design
Alternative 3

bv vy

= Special state space exploration
o Potentially infinite state space

Design
Alternative 4

o cannot put upper bound on the number of model
elements used in a design candidate (elements are
created and deleted during exploration).

Rule-based Design Space Exploration

Model queries as
g) AR Seq. of Transf.

Goals . Rules 1
Operation

e
satisfied

Solution model

Model queries as Modified model

Constraints Constraints
violated
LA,

Transf. rules as \ /
Operations

Seq. of Transf.
Rules 2

Seq. of Transf.
Rules 3

Initial Model as a
graph

!
by

Seq. of Transf.
Rules 4

Design Space Exploration

= Objectives : complex model metrics calculated by model
queries

= Cost calculations may depend on the seq. of transf. rules

= Multiple objectives

Motivating example: Smart Building

requirements

H CyberPhysicalSystem

H Request e -
0.+
< <gnumeration > »
0. E State
} oL
= Stopped
0.* | reqs o -
- q applicationType Tl _ hostType
H Requirement 5 o = InMaintenance 5
= count : EInt 5 ApplicationType HostType
0.1 ¥ 0.* requirements hostType 1 [)
: e
Instances 1| type :
* H ResourceReguirement
= requirediMemory : Elnt
= requirecdHdd : Elnt 0.*
hosts
0. 0.* | instances
applications 0.* | Instances derived edaes H Hostinstance
H Applicationinstance o = availableMemorySize : Elnt
O state ; State applications = availableHddSize ; Ent
0.* = totalMemory : Elnt

O totalHdd @ EInt

Motivating example: Smart Building

. Services . Application Types . Host Types

Fire Alarm Security

Measure Temp Motion Check

smoke Detect JRLRY set Termp »
! B3

! | Heat Map

Smoke
Sensor
2

Host Types (with install. costs and memory/storage reqs)

1

~

Compute

Temp

Sensor Server

3

Smart building: constraints

= Constraints
o Graph patterns to search for with model queries

o For smart buildings
* Constraints define valid or invalid configurations

unsatisfiedReq(E) unallocatedAppl(Al) applinstStopped(Al) extraHost(H)

R:Request

Al:Applinst AT:ApplType

Al:Applinst

Al:Applinst

E:Requirement
instances

count :
A:Applinst
Hl:HostlInst HT:HostType Hl:HostlInst
instance check:
check: R.count > M R.state != running

Positive Positive Positive Negative

Smart building: constraints con’t

= Constraints

o Constraint fulfillment

ConstFulfillment(M) = z wy, X matches(p, M)
VpeEP

\> Positive for well-formedness constraints
Negative for ill-formedness constraints

reqs
r1:Request Al Reqs #W Score

satisfiedReq 1 2 2

el:Requirement

instc allocatedAppl 0 3 0 : ConstFulfillment(M) =
al:Applinst applinstRun 0 4 0 1xXx24+40%x34+0x4+1x-1=1
state = stopped extraHost 1 -1 -1

h1:Hostinst 1

Smart building: rules

rule stop(Al)

Al:Applinst

check: Al.state=="RUN”

rule start(Al)

Hl:HostlInst

rule newApplinst(E)

Al:Applinst 2

find

action: Al.state="STOPPED”

check: Al.state=="STOPPED”

unsatisfiedReq(E)

action: Al.state="RUN”

instances

rule newHostInst(HT)

| instances

NEW

rule move(Al,HI,RR)

Al:Applinst 5

AT:ApplType

RR:ResReq

HT:HostType

instances
HN:HostInst

check: Al.state=="STOPPED” &&
HN.availMem>RR.regqMem &&
HN.availHdd>RR.reqHdd

action:
Hl.availMem=HT.defMem

rule allocate(Al,HI,RR)

Al:Applinst AT:ApplType

RR:ResReq
MAYS hostType

Hl:HostlInst HT:HostType
instances

action:

Hl.availMem +=RR.reqMem;
Hl.availHdd +=RR.reqHdd;
HN.availMem -=RR.reqMem;
HN.availHdd -=RR.reqHdd;

check: Al.state=="STOPPED” &&
Hl.availMem>RR.regMem &&
Hl.availHdd>RR.reqHdd

Hl.availHdd=HT.defHdd

rule delete(Al,HI,RR)

Hl:HostlInst HT:HostType

instances

check: Al.state=="STOPPED”

action:
Hl.availMem -=RR.reqMem;

Hl.availHdd -=RR.reqHdd;

action:
Hl.availMem +=RR.reqMem;

Hl.availHdd +=RR.reqHdd;

Smart Building: configuration model

Services and Requests

Basic Fire Alarm Smoke Detect
MeasureTemp

Comfort + Air Cond + SetTemp

Secure + Security +MotionCheck
+VideoRecord

- R < °-coes ppinst [hostinst

(a) Services 1 Comfort (2) 3xSD, 2xMT, 3xSS,6xTS,
Basic(1) 2XST 2xCS,
2 Max(2) 2xSD, 6xMT, 2xSS,6xTS,

2xST, 2xMC, 8xCS, 2xIC,
2xVR, 2xHM 2xVC,

(b) Two examples on company requests

Case study

Schedule execution on a distributed platform

Scheduling

= Platform model: computation nodes and
communication channels between them.

= Algorithm model: data-flow graph with
operations as vertices and data-dependencies as

edges.

= Challenge: schedule operations on the
computation nodes for execution

o Network communication takes time

o Local results can be accessed instantly

Example [A. Girault]

4 L, I
P1 «—> P2
L3 L,s
Dataflow/ALG Platform
/ o /
WCET | 1 [A[B|c /D E|F |G| o NEMscve| P1 | P2 | P3|
23 10 20 30 20 30 10 20 14 14 P1 0 15 10
I3 3 15 10 30 17 12 25 10 X 0 20
B x 10 15 10 30 20 10 15 18 20 0

1) Create schedule (when and where to run what?)
2) Create fault-tolerant (FT) schedule if at most 1 proc may fail

Naive solution (no FT)

L12 P2 WA P3 L13
End Start End Start End Start End Start End Start End

I 0 10

A 10 30 30 45

B 30 60

C 60 80

D 45 62

E 74 89 62 74

F 80 100

G 100 114

O 114 128

P1 . N \ @PZ@
LA BIC F GO Gl
LB\ P3 /L

FT Allocation and Schedule

P1 L12 P2 WA P3 L13

Start End Start End Start End Start End Start End Start End
I 0 10 0 13
A 10 30 13 28 30 40
B 38 53 28 38 40 55
C 30 50 55 65
D 50 80 38 55 55 75
E 67 82 55 67 65 85
F 80 100 85 95
G 100 114 95 110
O 114 128 110 128

L] EGYETEM ITEEZ

Summary

System properties Allocation example: railway system

* Functional requirements = Functional ® Functional structure
properties: functions that the system is able to e) EoreComr e ool e
p e rfo r m = IC"‘?{?Z::-:} rtZos VL-Cunlmlk Port Tﬂnnurﬁ:gm‘j. z:‘n: — Lr SelfTe
o including how the system behaves while operating — :ﬂ\“"’\x S \ J
also called operational properties Y T sy 8
. . 4 = '\~
= Extra-functional requirements = Extra- B R e e = S
. . . 7 S S~ S~
funCtlonaI propertleS: they do nOt have a bearlng [zone18BB : a;uzB:neB\ank \\ 'mnem:nmum\o\ ~ znneSB:B:BeagleBﬂneB\ack .mn;%:nmumﬂ.
. . . ~
on the functionality of the system, but describe ' — ﬂ—‘m
. . \
attributes, constraints, performance y
considerations, design, quality of service, f_m”k
environmental considerations, failure and
recovery. = Platform structure
] 1 200z
Analysis results: utilization
5,“3” e Analysis in steady-state
L;h_- How much time does error handling take?
— MsgSentl
simple DMR T mLh i B MsgSent1 23%
[Thermal5ens rT ActiveSens | Geniet Sall L_fouer | Eat
= WR 101 =
= Tl datapares}

1 -
= o s ﬂ s | [
l @
WR101 1

(3 dataparts)

Clientldle

