
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Architecture description models

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

2

Learning Objectives

General concepts

• Design vs architecture

• Common Concept of Architecture

Overview of architecture description languages

• AADL

• AUTOSAR

Architecture Description Languages

ADLs

Abstract

 ”The architecture of a program or computing
system is the structure or structures of the
system, which comprise software components,
the externally visible properties of those
components, and the relationships among them.”

 (no universal agreement on what ADLs should
represent)

 Software Architecture in Practice,
Bass, Clements, and Kazman

5

General Concepts

Overview

 First and foremost: no universal agreement on
what ADLs should represent

 Typically formal representation of architecture

 Human and machine readable

 Describes the system at a higher level

 Enables analysis on consistency, completeness,
etc.

7

Design vs. Architecture
 Design

o Functional requirements are addressed

 Architecture

o Highest level of system description

o Functional requirements are partitioned

o Non-functional requirements are addressed

o Typical Strategies
• Layering

• Diagnostics

• Performance control and monitoring

• COTS / reuse

• GUI driven, API driven, etc.

8

Common Concept of Architecture (by Tw Cook)

 Object Connection Architecture

o Configuration consists of

• Interfaces: features that must be provided

• Connections: object interface (+ call graph)

9

Common Concept of Architecture (by Tw Cook)

 Usually mature languages

o C++, Java, Ada

 Module must be „built” before architecture is
defined

 Conformance of a system to an architecture is low

 Architecture is sensitive to changes in the system

10

Common Concept of Architecture (by Tw Cook)

 Interface Connection Architecture

 Extends Interface and connection definition
o Interface: both required and provided features

o Connections: between required and provided interfaces

o Constraints :
• restricts behavior of connections and interfaces

• Architecture constraints system requirements

11

Common Concept of Architecture (by Tw Cook)

 Better conformance of a system to an architecture

 Architecture can be built before modules are
„implemented”

 Most ADL approaches follows this concept

 Similar techniques widely used

o Design-by-contract

o Strong partitioning RTOS

o Etc.

12

Architecture Analysis and Design
Language (AADL)

AADL
 Architecture Analysis and Design Language (AADL) is a standard

architecture modeling language
o Avionics
o Aerospace
o Automotive
o Robotics

 Component based notation
o Task and communication architecture

 Designed for modeling and analysis in mind
 SAE standard (AS 5506A)

 First was called Avionics Architecture Description Language
o Derived from MetaH created by Honeywell

 V1 version in 2004
 V2 version in 2009

14

AADL

 Based on the component-connector paradigm

 Key Elements:

 Core AADL language standard (V2-Jan,2009, V1-Nov 2004)
o Textual & graphical, precise semantics, extensile

 AADL Meta model & XMI/XML standard
o Model interchange & tool interoperability

 Annexes Error Model Annex as standardized extension
o Error Model Annex addresses fault/reliability modeling, hazard

analysis

 UML 2.0 profile for AADL
o Transition path for UML practitioner community via MARTE

 EMF representation also available (without EFeatureMap!)

15

AADL
 Precise execution semantics for components

o Thread, process, data, subprogram, system, processor, memory,
bus, device, virtual processor, virtual bus

 Continuous control & event response processing
o Data and event flow, synchronous call/return, shared access
o End-to-End flow specifications

 Operational modes & fault tolerant configurations
o Modes & mode transition

 Modeling of large-scale systems
o Component variants, layered system modeling, packaging,

abstract, prototype, parameterized templates, arrays of
components and connection patterns

 Accommodation of diverse analysis needs
o Extension mechanism, standardized extensions

16

AADL Representation Forms

17

thread speed_processing

features

raw_speed_in: in

data port;

speed_out: out data

port;

properties

Period => 50 ms;

end data_processing;

<ownedThreadType name=„speed_processing">

<ownedDataPort name="raw_speed_in"/>

<ownedDataPort name="speed_out" direction="out"/>

<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"

value=“50" unit="ms"

</ownedValue>

</ownedPropertyAssociation>

</ownedThreadType>

speed-
processing

50

AADL Language Elements

 Core modeling
o Components
o Interactions
o Properties

 Engineering support
o Abstractions
o Organization
o Extensions

 Infrastructure

 Strong modeling capabilities for embedded SW and
Computer systems

18

AADL Components

 Top element system

Example:
package F22Package

public

system F22System

end F22System;

system WeaponSystem

end WeaponSystem;

system implementation F22System.impl

subcomponents

weapon: system WeaponSystem;

end F22System.impl;

end F22Package;

19

AADL SW Components

 System – hierarchical organization
of components

 Process – protected address space

 Thread group – logical organization
of threads

 Thread – a schedulable unit of
concurrent execution

 Data – potentially sharable data

 Subprogram – callable unit of
sequential code

20

Subprogram

Process

Thread group

Thread

System

Data

AADL SW Components

 Process

o Protected virtual address space

o Contains executable program and data

oMust contain 1 thread

 Thread

o Concurrent tasks

o Periodic, aperiodic, sporadic ,background, etc.

o Interaction through port connection, subprogram calls
or shared data access

o errors: recoverable, unrecoverable

21

AADL SW Components

 Ports and Connections

o Data (non queued data), Event (queued signals) or
Event data (queued messages)

o Complex Connection hierarchies through components

o Timing

o Feature groups

 Data

o Optional but makes the analysis more precise

 Flows

o Logical flow of data and control

22

AADL Computer Components

 Processor / Virtual Processor –
Provides thread scheduling and

 Memory – provides storage for
data and source code

 Bus / Virtual Bus – provides
physical/logical connectivity
between

 Device – interface to external
environment

23

BUS Virtual Bus

Processor

Virtual Proc.

Memory

Device

AADL Computer Components

 ”Real” HW components

o Bus transmission time, latency,

o Processor timing, jitter

oMemory capacity

o Etc.

 Logical resources

o Thread scheduling of a processor

o Communication protocol overt network connection
(modeled as bus)

o Transactional memory (modeled as memory)

24

AADL Computer Components
 Processor

o As HW
• MIPS rating, size, weight, clock, memory manager

o As Logical resource
• Schedule threads scheduling policies and interruption
• Execute SW

 Bus
o As HW

• Physical connection inside/between HW components

o As logical resource
• Protocol, which are used for the communication

 Memory
o Processes must be in memory
o Processors need access to memory

 Device Components
o Represents element that are not decomposed further
o Sensors/Actuators
o Device Driver

25

AADL Binding

 Binding

o Bringing SW models and the execution platform
together

o Virtual processors can be subcomponents of other
virtual processors ARINC653 partitioning

o Hierarchical Scheduling

o Virtual buses to physical ones

• One-to-one

• Many-to-one

26

Summary

 After 15 years of mainly DoD research it is getting
mature enough

 Many pilot project uses AADL

o FAA

o DoD

o Lockheed Martin

o Rockwell Collins (Steven P. Miller)

 Many research paper on formal analysis,
simulation and code generation

 Ongoing harmonization with SysML and MARTE

27

AUTOSAR

History
 AUTomotive Open System ARchitecture
 Started in 2002
 BMW, Bosch, Daimler, Conti, VW, + Siemens
 Industrial standardization group

o Current standard version: 4.3 (mid 2017)
o Currently used 4.X (from end 2009)

 Members: OEMs, Tool vendors, Semiconductor manufacturers
 Europe-dominated

 Scope
o Modeling and implementation of automotive systems
o Distributed
o Real-time operating system
o String based interaction with HW and environment

 Out of scope
o GUI, Java, internet connectivity, File systems, Entertainment systems, USB

connectivity etc.

29

Key Concepts of AutoSAR
 A standard runtime architecture

o component-oriented
o layered
o extensible

• New functionalities
• New components (component implementations)

o all major interfaces standardized
o Standardized Run Time Environment (RTE)

 A standard modeling and model interchange approach
o follows the principles of model-driven design
o supports the interchange of designs
o supports the collaborative development

• Between different developers,
• Teams,
• And even companies

 Conformance test framework
o assuring the conformance to the standard
o Still evolving – new in version 4.0

30

High-level design flow

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level software modeling
• Definition of

• components
• component ports
• port interfaces
• data types – logical

• Result
• Virtual Functional Bus (VFB)-level
software model

High-level design process
Component
Model (VFB)

High-level
SW modeling

Detailed
Component

Design
Component

Internal
Behavior

Detailed component design
• Specification of

• component internal behavior
• functional breakdown
• implementation/use of ports

• Non-AutoSAR
• specification of detailed behavior
• any tool can be used

• UML
• Simulink
• etc.

• Result
• AutoSAR component internal behavior
model
• Non-AR: behavioral models/design

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

Detailed
Component

Design
Component

Internal
Behavior

High-level hardware modeling
• Specification of

• Electronic Control Unit (ECU) resources
• CPU
• memories
• peripherals
• communication hw

• system topology
• ECU instances
• clusters
• connections

• Result
• ECU resource model – for all ECUs
• System topology model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Hardware-software integration
• mapping

• software component allocation
• component implementation selection
• data-element to signal mapping

• inter-ECU communication
• communication configuration

• signal to Protocol Data Unit (PDU) mapping
• PDU to frame mapping
• Signal, PDU, Frame triggering
• Cluster and controller configuration
• Frame scheduling (LIN, FlexRay)

• Result
• System model describing the integrated
HW/SW system

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Component implementation
• Implemeting all components

• automatically
• TargetLink
• Simulink Realtime workbench
• SCADE
• etc.

• manually
• Result

• implementation of the components
• C/C++/…

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

ECU configuration
• Configuring all basic software modules

• based on the system model
• for each ECU separately

• Result
• ECU configuration model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementationBasic Software Services (BSW) configuration

generation
• Configuration generation for basic software

• from the configuration model
• Result

• Configuration files (c,h)
• Generated modules/module fragments

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Compilation and linking
• Building and linking all sources

• application component implementations
• basic software modules
• BSW configuration files

• Result
• Deployable binary file

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Models in the design flow

 Software Component Template

o Components, ports, interfaces

o Internal behavior

o Implementation (files, resource consumption, run time,
etc.)

 ECU Resource Template

o Hardware components, interconnections

 System Template

o System topology, HW/SW mapping

o Comm. matrix

Models in the design flow 2

 Basic Software Module Template

o BSW modules
• Services

• Schedulable entities

• Resource consumption

 ECU Configuration Parameter Definition Template

o Configurable parameters of BSW modules

 ECU Configuration Description Template

o Actual configurations of BSW modules

o Based on the ECU Parameter Definition

AUTOSAR vs. UML/SysML/... modeling

 AUTOSAR defines models with

o Domain Specific Constructs

o Precise syntax

o Synthesizable constructs
• Direct model -> transformations

• Direct model -> detailed model mappings

o Different abstraction levels
• From Virtual Function Bus to configuration

 Result

o Models are primary design and implementation artifacts
• More precise, consistent modeling should be done

AUTOSAR Components

Component-oriented design

 What is a component?
o “A component is a self contained, reusable entity that

encapsulates a specific functionality (and/or data), and
communicates with other components via explicitly defined
interfaces.”

 AUTOSAR uses the term component for application-level
components

o Elements related to the high-level functionality of the system
under design

 Basic software (middleware) components are called modules.

o Standard elements of the AUTOSAR architecture

Component-based approach

Component

Component

• Encapsulates a specific functionality
• Different kinds

• Composite component – hierarchical refinement
• Application SW component – generic, high level functionality
• Sensor/actuator SW-C – handling sensor or actuator data
• ECU HW abstraction – higher level device driver and abstraction
• ComplexDeviceDriver – time-critical, low-level driver
• Calibration parameter SWC – collects system calibration
parameters
• Service SWC – represents a basic software module from the service
layer

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach

Component

Ports

• The only interaction points between the component and its
environment
• Are implementing port interfaces

• sender receiver (message-based unidirectional
communication)
• client-server (remote procedure call)

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach – port notation

Component

Receiver port Sender port

Server port Client port

Service port
To Basic Software (BSW)

Module services

Virtual Functional Bus

Component A

Component interconnection – the Virtual Functional Bus

Component B

Virtual Functional Bus (VFB)

• Abstract interconnection layer
• Implementation of data/control transport between components
• No hardware/network dependency
• Hides the details of the implementation

• Allows high-level integration and simulation of components
• Before hardware architecture is chosen

Component C Component X

…..

…..

Software Components

 On high-level, atomic components are black
boxes

 Detailed design “looks into” these black boxes

 Main goals

o Detail the behavior to get schedulable entities

o Specify the semantics of port handling

o Specify any service needs

o Specify any RAM, nvRam needs

Refinement of a component

Component

Comp.c Comp.h

Black box definition of a component

Definition of component internal
behavior
Schedulable entities, connections to
the ports

Component implementation.
Specification of source and header
files

Component internal behavior

 Specification of the internals of an atomic
SWC

 Schedulable elements

o Called: runnable entities

 Connection of ports

o Port semantics

o Port API options

 Inter-runnable communication

 Runnable activation and events

Component internal behavior – runnable entities

 Smallest code-fragments considered by RTE

 Subject to scheduling by the OS

 Abstraction of a schedulable function

 Communicates

o Using the SWC ports

o Using inter-runnable communication facilities

 Is activated by

o An RTE event

• Communication-related event

• Timing event

Summary of AUTOSAR

 AUTOSAR defines

o A component-oriented system design approach
• Domain specific modeling language

• A high level design process

• Standard middleware (basic software) stack

– Standard interfaces

– Standard configuration descriptors

 AUTOSAR compliant ECU software

o Includes several BSW and application components

o RTE provides the integration (glue) between these

o Configuration and glue code is mostly auto-generated

Summary

