Safety-critical systems:
Architecture

Systems Engineering course

Andras Voros
(slides: Istvan Maijzik)

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Overview of the goals

Previous topics

= What we specified?

o Safety function requirements: Function which is
intended to achieve or maintain a safe state

o Safety integrity requirements: Probability of a safety-
related system satisfactorily performing the required
safety functions (i.e., without failure)

= Safety Integrity Level and component fault rates
???

o SIL4:10°...107 faults per hour —

o Typical electronic components: 10>...10° faults/hour

o Typical software: 1..10 faults per 1000 line of code

Goals

= Safety critical systems study block

1. Requirements in critical systems: Safety,
dependability

[2. Architecture design (patterns) in critical systems]

3. Evaluation of system architecture

" Focus: Design of system architecture to ...

o maintain safety

o handle the effects of faults in hardware and software
components

Learning objectives

Architecture design in safety critical systems
= Understand the role of architecture

= Know the typical architecture level solutions for
error detection in case of fail-stop behavior

" Propose solutions for fault tolerance in case of
o Permanent hardware faults

o Transient hardware faults
o Software faults

= Understand the time and resource overhead of
the different architecture patterns

Objectives of architecture design

Safe operation
FaiI—safe operation even in case of faults

/ T

Fail-stop behaviour Fail-operational behaviour
e Stopping (switch-off) e Stopping (switch-off)
is a safe state is not a safe state
e |n case of a detected error e Service is needed even
the system has to be in case of a detected error
stopped e full service

e degraded (but safe) service
e Fault tolerance is required

e Error detection is required

Objectives of architecture design

Safe operation
FaiI—safe operation even in case of faults

Fail-stop behaviour Fail-operational behaviour

e Stopping (switch-off) e Stopping (switch-off)
is a safe state is not a safe state

e |n case of a detected error e Service is needed even
the system has to be in case of a detected error
stopped e full service

e Error detection is required * degraded (but safe) service
e Fault tolerance is required

Typical architectures
for fail-stop operation

Budapest University of Technology and Economics
Department of Measurement and Information Systems

1. Single channel architecture with built-in self-test

= Single processing flow with error detection

____1___|

= Scheduled hardware self-tests
o After switch-on: Detailed self-test
o In run-time: On-line tests

" Online software self-checking

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

= Disadvantages
o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

Implementation of on-line error detection

= Application dependent (ad-hoc) techniques

o Acceptance checking (e.g.: too low, too high value)
o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)
o Structure checking (e.g.: broken structure)

= Application independent (platform) mechanisms

o Hardware supported on-line checking
* CPU level: Invalid instruction, user/supervisor modes etc.
« MMU level: Protection of memory ranges

o OS level checking

* Invalid parameters of system calls
* OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell to be States of two correct (adjacent) cells
checked: to be checked:
Ly L
wO “IJ/_ w j/_

States in case of stuck-at 0/1

faults: o
wo,w1 wo,w1 r'/o r'/1

C@ Gp vy, ')/

States in case of transition 1

fault: wD W
1
T >/

w0 1

Example: Checking execution flow (sw)

= Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

Source code: Control flow graph:
a: for (i=0; i<MAX; i++) { e
b: if (i==a) { N
C: n=n-i;

}else { e

T \/

e: printf(“%d\n”,n);
}

(

e
\

f: printf(“Ready.”)

Example: Checking execution flow (sw)

= Checking the correctness of statement sequence
o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

Instrumented source code: Control flow graph:

a: S(a); for (i=0; i<MAX; i++) { aﬁ \

b: S(b); if (i==a) {
C: S(c); n=n-i;

}else { e

d: S(d); m=m-i;
} \ /

e: S(e); printf(“%d\n”,n);
}

(

e
\

f: S(f); printf(“Ready.”)

2. Two-channels architecture with comparison

= Two or more processing
channels

o Shared input
o Comparison of outputs
o Stopping in case of deviation
= High error detection
coverage

o The comparator is a critical
component (but simple)

= Disadvantages: b- -
o Common mode faults -
o Long detection latency

\n__, stop

+«—ll

Example: Tl Hercules Safety Microcontrollers

CPU self test Memory-protection ECC for Flash / RAM
controller requires units in CPU and interconnect evaluated
little S/W overhead DMA inside the Cortex R4F

Logical / physical
design optimized to
reduce probability
of common cause
failure

Memory
Flash w/ ECC

RAM w/ ECC

Flash
EEPROM w/ ECC

Memory Protection

Memory Interface
JTAG Debug =

Fail Safe
e

Enhanced System Bus and Vectored Interrupt Module

Power, Clock, and Safety
OSC PLL PBIST/LBIST

POR ESM

CRC RT/DWWD

Dual-core lockstep—
cycle-by-cycle CPU
fail safe detection

Parity on all
peripheral, DMA and
interrupt controller
RAMs

Parity or CRC in
serial and network
communication

peripherals

Safe island hardware diagnostics (red)
Blended hardware diagnostics (blue)
Non-safely critical functions (black)

Memory BIST on all
RAMs allows fast
memory test at
startup

On-chip clock and
voltage monitoring

Error signaling
module with
external error pin

1/0 loop back, ADC
self test, ...

Dual ADC cores with
shared channels

3. Two-channels architecture with safety checking

= |ndependent second |
channel

o Safety bag: only safety
checking

o Diverse implementation

o Checking the output of
the primary channel

= Advantages
o Explicit safety rules

o Independence of the e A L ER
checker channel SN

Example: Elektra interlocking system

Peripheral elements

HMI

Central
Controller

Field Element
Controller

Two channels:

Logic channel:
CHILL (CCITT High
Level Language)
procedure-
oriented
programming
language

Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
language

Typical architectures
for fault-tolerant systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Objectives of architecture design

Fail-safe operation

/

Fail-stop behaviour

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
e Service is needed even

in case of a detected error
¢ full service
e degraded (but safe) service

e Fault tolerance is required

e Stopping (switch-off)
is a safe state

e |[n case of a detected error
the system has to be
stopped

e Error detection is required

Fault tolerant systems

= Fault tolerance: Providing (safe) service in case of faults
o Intervening into the fault — error — failure chain
* Detecting the error and assessing the damage
* Involving extra resources to perform corrections / recovery
* Providing correct service without failure
* (Providing degraded service in case of insufficient resources)

= Extra resources: Redundancy
o Hardware h
o Software

. > resources (sometimes together)
o Information

o Time

Categories of redundancy

= Forms of redundancy:

o Hardware redundancy

* Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
* Extra software modules

o Information redundancy
e Extra information (e.g., error correcting codes)

o Time redundancy
* Repeated execution (to handle transient faults)

= Types of redundancy
o Cold: The redundant component is inactive in fault-free case
o Warm: The redundant component has reduced load
o Hot: The redundant component is active in fault-free case

Overview: How to use the redundancy?

"= Hardware design faults: (< 1%)
o Hardware redundancy with design diversity

* Hardware permanent operational faults: (™~ 20%)
o Hardware redundancy (e.g.: redundant processor)

"= Hardware transient operational faults: (~70-80%)
o Time redundancy (e.g.: instruction retry)
o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

= Software design faults: (~ 10%)
o Software redundancy with design diversity

1. Fault tolerance for hardware permanent faults

With diversity in case of considering design faults

Replication:

Diagnostic
unit

= Duplication with diagnostics:

o Error detection by comparison " Primary

Input Switch-
_— over

o With diagnostic unit:
Fault tolerance by switch-over

= TMR: Triple Modular Redundancy
o Masking the failure

Secondary

i .) » Module 1
by majority voting Input
] o — g Majority [SIL{ells
o Voter is a critical component g| IS " e '
(but simple)
» Module 3

= NMR: N-modular redundancy
o Masking the failure by majority voting

o Mission critical systems: Surviving the mission time

2. Fault tolerance for transient hardware faults

= Approach: Fault tolerance implemented by software

o Detecting the error
o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

" Four phases of operation:
1) Error detection
2) Damage assessment
3) Recovery

4) Fault treatment and continuing service

Phase 1: Error detection

= Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level
o E.g., detecting violation of memory access restrictions

= Application dependent techniques:
o Acceptance checking
o Timing related checking
o Cross-checking
o Structure checking

o Diagnostic checking

Phase 2: Damage assessment

= Motivation: Errors can propagate among the components
between the occurrence and detection of errors

Interactions

Fault% | Error detection
A
\

= Limiting error propagation: Checking interactions

v

o Input acceptance checking (to detect external errors)
o Output credibility checking (to provide ,fail-silent” operation)

= Estimation of components affected by a detected error

o Logging resource accesses and communication

o Analysis of interactions (before error detection)

Phase 3: Recovery

= Forward recovery:
o Setting an error-free state by selective correction
o Dependent on the detected error and estimated damage
o Used in case of anticipated faults

= Backward recovery:
o Restoring a prior error-free state (that was saved earlier)
o Independent of the detected error and estimated damage
o State shall be saved and restored for each component

= Compensation:

o The error can be handled by using redundant information

Types of recovery

= State space of the system: Error detection

V2 A

Faultoccurrence% 4 _
7 | Error detection

s(t)

v1 state variable

Types of recovery

= State space of the system: Forward recovery

V2 A

s(t)

_____ > Forward recovery

v1 state variable

Types of recovery

= State space of the system: Backward recovery

V2

Backward recovery

[0 Saved state

»

v1 state variable

Types of recovery

= State space of the system: Compensation

V2 A

------ * Compensation

v1 state variable

Types of recovery

= State space of the system: Types of recovery

V2

Backward

Forward

------ > Compensation
[1 Saved state

v1 state variable

Backward recovery

= Bac
o C
oC

kward recovery based on saved state
neckpoint: The saved state

neckpoint operations:

* Save: copying the state periodically into stable storage

* Recovery: restoring the state from the stable storage
 Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

" Lim
oE

oR
o)

ited applicability: Based on operation logs
rror to be handled: unintended operation

ecovery is performed by the withdrawal of
perations

o Analogy: “undo”

Scenarios of backward recovery

Saved state 1

Saved state 2

(1 il
Fault Detection
L |
(1 Iv — >
\'—— /
%—I !
(1
v
\ \./'.
.\._-___/
é |
D ——— >
/
\ v,\ /“/
e, _ _

"t

Phase 4: Fault treatment and continuing service

" For transient faults:
o Handled by the forward or backward recovery

" For permanent faults:
o Recovery is unsuccessful (the error is detected again)
o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
* Replacing the faulty component using redundancy
* Degraded operation: Continuing only the critical services

o Repair and substitution

4. Fault tolerance for software faults

= Repeated execution is not effective for design faults!

= Redundancy with design diversity is required
Variants: Redundant software modules with
o diverse algorithms and data structures,
o different programming languages and development tools,
o separated development teams

in order to reduce the probability of common faults

= Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

= Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used
o Majority voting is performed on the output

* Acceptable range of difference shall be specified
* The voter is a critical component (but simple)

—'l Variant 1 |—

Input
:I Variant 2

Output

Error

—'l Variant 3 |— signal

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants
o In case of a detected error another variant is executed

l Input

Execution of
a variant

Yy Acceptance n
checking

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants
o In case of a detected error another variant is executed

l Input

Execution of
a variant

\ 4

Yy Acceptance n N/ Istherean Yy
checking extra variant?

Output Error signal

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed
l Input

I Saving state I

>
«

Execution of Restoring
a variant state

A 4

Y Acceptance n N/ Istherean Y
checking extra variant?

Output Error signal

Comparison of the techniques

Property/Type

N-version
programming

Recovery
blocks

Error detection

Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel

Serial

Execution time

Slowest variant
(or time-out)

Depending on the
number of faults

Activation of Always Only in case of fault
redundancy (active) (passive)
Number of [(N-1)/2] N-1

tolerated faults

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

'
[SYSTEM FAILURE |

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults

o Fault tolerance implemented by software
1. Error detection
2. Damage assessment
3. Recovery: Forward or backward recovery (or compensation)
4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

