
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Communication modeling

Vince Molnár

1

Informatikai Rendszertervezés
BMEVIMIAC01



2

Roots & Relations

 Graphical scenario languages 

o Modeling inter-object behavior

 Example languages:

o Message Sequence Charts (MSC)

o Live Sequence Charts (LSC)

o…

2



3

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform 
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW 
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety



4

Learning Objectives

Message-based interaction modeling

•Understand the basic blocks of message-based modeling
•Identify the participants, message types and constraints to 
describe inter-component behavior
•Understand the syntactic building blocks of UML Sequence 
Diagrams
•Understand the semantics of UML Sequence Diagrams
•Use Combined fragments to express complex logic and 
conformance relations
•Avoid ambiguity by fixing the interpretation of models 
according to a complete and sound semantics



5

MODELING INTERACTIONS

Objectives

Areas of application

Interaction diagram types



6

Objectives

Modeling inter-object communication

 Order and type of messages are important

o Data and parameters are not the main focus

 “Interactions do not tell the complete story”

o Specification of certain scenarios only

o Samples of behavior rather than internal logic

 Should be applicable on many levels

o Method call sequences of objects in a program

o Messages between components of a system

o Communication of nodes in a distributed system



7

Areas of application

 Refining use cases

o Typical communication between actors and the system

 Modeling and analysis of method call sequences

o “What calls what and when?”

 Designing protocols

o Specification of allowed messages and their order

o Often contains logic

 Visualizing an execution trace or log

 Specification of test cases

o Requires assumptions, assertions, etc.



8

Relations to other diagrams

 Uses model elements from

o Structure: Class, Block, Component

o Behavior: Signals, Operations of classes

 Refines

o Use case: basic and alternate flows

o Activity: high-level activities, provides alternative view



9

Interaction diagram types

 Sequence Diagram

o Models a sequence of messages between objects

o Can include logic, timing, parameters, etc.

 Communication Diagram

o Focuses on a single message flow

 Interaction Overview Diagram

o Models control flow between different Interactions

o Similar to Activity Diagrams

 Timing Diagram

o Focuses on timing



10

Interaction diagram types

Interaction Overview

Timing

Communication

Source: http://www.uml-diagrams.org



11

UML SEQUENCE DIAGRAM

Basic building blocks

Lifecycle & Special messages

Combined fragments & References

Timing & Invariants



12

Basic building blocks

: Client : Server

request(data)

close

Participant

Lifeline

Synchronous
call

Return
message

Asynchronous
message

Parameter of 
operation



13

Lifecycle & special messages

: Client

: Socket

Create
message

Delete
message

Lost 
message

Found
message

Execution
specification



14

Basic building blocks

 Participants

o Instances uses of a class or block

o Have a lifeline that denotes the span of their existence

o Can have a name and/or a type

 Messages

o Synchronous calls

• Usually have a return message (optional)

o Asynchronous messages (async. calls or signals)

o Calls and messages may have arguments

• A dash (“–”) denotes an undefined argument

• (Arguments are not the strong point in Sequence Diagrams)



15

Lifecycle & special messages

 Create & delete message

o Denotes the creation/destruction of another 
participant

 Execution specification

o Denotes the duration when a participant is active

• Either processing or waiting for a synchronous response

o Not mandatory, but tools usually use them

• Good for one active thread

• Confusing for more

 Lost & found messages

o Source or target is either not known or not important



16

Combined fragments

 Operators to express complex scenarios

o Can have several operands

o Each operand can have a guard

: Client : Server

request(data)

alt [operation pending]

Combined
Fragment

Operator 
kind

Guard

close

[else]

OperandsOperands



17

Combined fragments

 Operators for choice and iteration

o alt: choice between the operands

o opt: choice between the sole operand or nothing

o loop: loop with lower or upper bound

o break: represents a breaking scenario

 Operators for parallelization and sequencing

o par, strict, seq, critical

 Operators related to the conformance relation

o neg, assert, ignore, consider

 (See semantics later)



18

Interaction use

 Interactions support decomposition and reuse

: Client : Server

ref
Send request

ref

Establish Connection
open

Interaction
use

Gate



19

References

 Interactions support decomposition and reuse

: Client : Server

ref
Send request

ref

Establish Connection
open

: Server

open

register

sd Establish Connection



20

Timing & Invariants

Elapsed time can be expressed and constrained

 Observations and Constraints

: Client : Server
request(data) 

d=duration

close {5..10}

{2*d..3*d}
t=now

{t..t+10}

Duration 
observation

Time 
observation

Duration 
observation

Duration 
constraint

Time 
constraint {finished == true}

State
Invariant



21

Summary

 Participants

o Lifeline and Execution specification

 Messages

o Synchronous & asynchronous

o Lost & found

o Create/delete messages

 Combined fragments

o Logic, parallelism, sequencing, conformance relation

 Interaction use

 Timing and State invariants



22

SEMANTICS

Model of semantics

Basic rules

Semantics of Combined Fragments

Final word of caution



23

Introduction

: A : B

m1

m2

: C

m3

Shall m2 be 
sent after m1?

What if B receives
only m2? Shall it 

send m3?

Shall m3 be 
definitely sent? Or

just optionally?
May B send an m4

message here?

Is this whole sequence always happening?
Sometimes happening? 

Is it the entire behaviour of the system?



24

Model of semantics

 Semantics is defined as the sets of traces that are

o valid, invalid, or inconclusive

o for the Sequence Diagram.

 Elements of a trace: event occurrences

o Sending messages

o Receiving messages

 A Sequence Diagram defines a partial order

o Several traces may be valid

 Negative fragments (neg), assertions (assert) and 
State Invariants define negative traces

Analogy with
regular

expressions



25

Basic rules

 2 events

o Sending x in A !x

o Receiving x in B ?x

 Weak (partial) ordering: „happens-before”

o Occurrences on the same lifeline are ordered

o Receiving a message occurs after sending it (causality)

 Valid traces: { !x, ?x }

A B

x

A B

x x



26

Basic rules

 2 events

o Sending x in A !x

o Receiving x in B ?x

 Weak (partial) ordering: „happens-before”

o Occurrences on the same lifeline are ordered

o Receiving a message occurs after sending it (causality)

 Valid traces: { !x, ?x }

A B

x

A B

x x

Every other trace is
inconclusive



27

Weak sequencing (default)

 Weak sequencing: !x, ?x seq !y, ?y

o Preserves the order within the operands

o Occurrences are ordered only on the same lifeline

• In the order of the operands

• ?x and !y are not ordered

 Valid traces:
{ !x, ?x, !y, ?y , !x, !y, ?x, ?y }

A B

x

y



28

 Some tools use automatic sequence numbers

 Why is this a bad idea?

Caution: message sequence numbers

: A : B

1: m1

2: m2

: C



29

Caution: Interaction use 

 Interaction occurrence: S seq !y, ?y

o Just a shortcut: equivalent to pasting S

 Valid traces:

{ !x, ?x, !y, ?y , !x, !y, ?x, ?y }

A B

y

ref

S

sd S

A B

x



30

Caution: Interaction use

 Which one may be sent first?

o only m1, only m2 or both?

: A : B

m1

m2

: C

ref

Unknown interaction



31

Caution: Interaction use

 Which one can be sent first?

om1, m2 or both?

: A : B

m1

m2

: C

ref
m



32

Caution: Interaction use

 Which one can be sent first?

o m1, m2 or both?

: A : B

m1

m2

: C

ref

m



33

Strict sequencing

 Strict sequencing: !x, ?x strict !y, ?y

o Preserves the order within the operands

o Occurrences are ordered on all lifelines

• In the order of the operands

 Valid traces: { !x, ?x, !y, ?y }

A B

x

y

strict



34

Alternative fragments

 Alternative fragments: !x, ?x alt !y, ?y

o Union of the valid traces of the operands

o Optional fragment: opt !x, ?x = !x, ?x alt 

 Valid traces: { !x, ?x, !y, ?y }

A B

x

y

alt

Only operands with
satisfied guards

participate!



35

Loop fragment

 Loop fragment: !x, ?xn..m

o Valid traces of operands concatenated n to m times 

o Only repeats while the (optional) guard is true!

• Hybrid of a for and a while loop

A B

x

loop(n..m)



36

Break fragment

 Break fragment:

o Executes fragment behavior, then

o Terminates the execution of the enclosing fragment

• And only the innermost

o Only if the guard is true

• Without a guard: non-determinism (UML 2.5.1, Sect. 17.6.3.9.)

A B

x

loop(n..m)

break

https://www.omg.org/spec/UML/2.5.1/PDF


37

Parallel fragments

 Parallel fragments: !x, ?x par !y, ?y

o Arbitrary interleaving of operand behaviors

 Valid traces:

{ !x, ?x, !y, ?y, !x, !y, ?x, ?y, !x, !y, ?y, ?x,

!y, ?y, !x, ?x, !y, !x, ?y, ?x, !y, !x, ?x, ?y }

A B

x

y

par



38

Critical fragments

 Critical fragments:

o Behavior is atomic and cannot be interleaved

 Valid traces: { !x, ?x, !y, ?y, !y, ?y, !x, ?x }

A B

x

y

par
critical

critical



39

Assertion fragments

 Assertion fragments: assert !x, ?x

o Specifies exactly what must happen

 Valid traces: { !x, ?x }

 Invalid traces: { !x, ?x }C

o (complement of valid traces)

A B

x
assert



40

Consider and Ignore fragments

 Assume there are 3 kinds of messages: x, y and z

o Consider and Ignore filter out the irrelevant messages

o The message z can appear in any number and any 
interleaving

 Valid traces: !x, ?x par !z, ?z*

A B

x

consider {x, y}

A B

x

ignore {z}



41

Final word of caution

 There are a lot of variants

o Depending on the domain and purpose

 And some open questions as well

o E.g. can traces have pre-/postfixes?

 Conclusion:

Fix your interpretation 
prior to using Sequence Diagrams



42

Possible variations

For other choices and variations see: Z. Micskei and H. Waeselynck: The many meanings of 
UML 2 Sequence Diagrams: a survey, SoSyM, 10(4):489-514, Springer, 2011.



43

MODELING WITH
UML SEQUENCE DIAGRAMS

Modeling Actor-System interactions

Visualizing traces or typical behavior

Modeling protocols

Defining test cases



44

Modeling Actor-System interactions

Typically the refinement of use cases

 Mostly using simple elements only

o No complex logic (Combined fragments)

o Semantics is not very important here

 Helps in

o …the definition of system-level ports and interfaces

o…identifying data exchanged between the system and 
the environment



45

Visualizing traces or typical behavior

Typically a single scenario

 Not to define a behavior, but to understand
aspects of it

o Focus is on the order of events and messages

o Minimal usage of logic (Combined fragments)

o Often assumes implicit strict sequencing

• Everything happens in vertical order

 Helps in:

o Understanding/analyzing certain behaviors of the 
system



46

Modeling protocols

Typically heavy focus on messages & complex logic

 One way to define a protocol

o Use Sequence Diagrams to design phases

• What to send and when (timing)

• More complex usage of Combined fragments

o Use Interaction Overview Diagram to link the phases

 Alternatives:

o Activity Diagram if the internal logic is more important

o State Machine if heavily state-based

• Still using Sequence Diagrams to visualize communication



47

Defining test cases

Typically has a trigger/setup and an assertion phase

 Trigger/setup phase (may)

o Decides if the observed trace belongs to the test case

o Result may be inconclusive if trace deviates here

• Otherwise the assertion phase starts

 Assertion phase (must)

o The trace is considered invalid if it deviates here

 Heavy use of conformance-related fragments

o Semantics really matter here



48

Test case:

“Once the Client sent a request and the Server replied,
the Client must close the connection.”

Defining test cases

: Client : Server

request(data)

assert
close

Setup/trigger phase:
Prepares the system

Assertion phase:
Tests the system

If setup occurs and assertion does not  invalid (test failure)
If setup does not occur  inconclusive (different test case)



49

Summary

 Interactions model inter-object behavior

 Several diagram types in UML

o Sequence Diagrams are used most frequently

 Powerful language, many elements

o Can be used for requirements, design, tests…

 But interpretation has to be fixed in the team!


