
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Architecture Languages and
Integrated Analysis

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generation code generation

HW library

Requirements

Fault tolerance
& safety

2

Learning Objectives

Function-platform allocation

•Summary of extra-functional system properties
•Brief overview of platform modeling in SysML
•Describe allocation specification in the SysML
language

Case-studies

• See approaches to capture allocation information on
models from different domains

• Analyze extra-functional properties of the integrated
allocation model

3

Architecture Description Languages

ADLs

Abstract

 ”The architecture of a program or computing
system is the structure or structures of the
system, which comprise software components,
the externally visible properties of those
components, and the relationships among them.”

 (no universal agreement on what ADLs should
represent)

 Software Architecture in Practice,
Bass, Clements, and Kazman

5

Architecture Analysis and Design
Language (AADL)

AADL
 Architecture Analysis and Design Language (AADL) is a standard

architecture modeling language
o Avionics
o Aerospace
o Automotive
o Robotics

 Component based notation
o Task and communication architecture

 Designed for modeling and analysis in mind
 SAE standard (AS 5506A)

 First was called Avionics Architecture Description Language

o Derived from MetaH created by Honeywell

 V1 version in 2004
 V2 version in 2009

7

AADL

 Based on the component-connector paradigm

 Key Elements:

 Core AADL language standard (V2-Jan,2009, V1-Nov 2004)
o Textual & graphical, precise semantics, extensile

 AADL Meta model & XMI/XML standard
o Model interchange & tool interoperability

 Annexes Error Model Annex as standardized extension
o Error Model Annex addresses fault/reliability modeling, hazard

analysis

 UML 2.0 profile for AADL
o Transition path for UML practitioner community via MARTE

 EMF representation also available (without EFeatureMap!)

8

AADL
 Precise execution semantics for components

o Thread, process, data, subprogram, system, processor, memory,
bus, device, virtual processor, virtual bus

 Continuous control & event response processing
o Data and event flow, synchronous call/return, shared access
o End-to-End flow specifications

 Operational modes & fault tolerant configurations
o Modes & mode transition

 Modeling of large-scale systems
o Component variants, layered system modeling, packaging,

abstract, prototype, parameterized templates, arrays of
components and connection patterns

 Accommodation of diverse analysis needs
o Extension mechanism, standardized extensions

9

AADL Representation Forms

10

thread speed_processing

features

 raw_speed_in: in

data port;

 speed_out: out data

port;

properties

 Period => 50 ms;

end data_processing;

<ownedThreadType name=„speed_processing">

<ownedDataPort name="raw_speed_in"/>

<ownedDataPort name="speed_out" direction="out"/>

<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"

value=“50" unit="ms"

</ownedValue>

</ownedPropertyAssociation>

</ownedThreadType>

speed-
processing

50

AADL Language Elements

 Core modeling
o Components
o Interactions
o Properties

 Engineering support
o Abstractions
o Organization
o Extensions

 Infrastructure

 Strong modeling capabilities for embedded SW and
Computer systems

11

AADL Components

 Top element system

Example:
package F22Package

 public

system F22System

end F22System;

system WeaponSystem

end WeaponSystem;

system implementation F22System.impl

 subcomponents

 weapon: system WeaponSystem;

end F22System.impl;

end F22Package;

12

AADL SW Components

 System – hierarchical organization
of components

 Process – protected address space

 Thread group – logical organization
of threads

 Thread – a schedulable unit of
concurrent execution

 Data – potentially sharable data

 Subprogram – callable unit of
sequential code

13

Subprogram

Process

Thread group

Thread

System

Data

AADL SW Components

 Process

o Protected virtual address space

o Contains executable program and data

oMust contain 1 thread

 Thread

o Concurrent tasks

o Periodic, aperiodic, sporadic ,background, etc.

o Interaction through port connection, subprogram calls
or shared data access

o errors: recoverable, unrecoverable

14

AADL SW Components

 Ports and Connections

o Data (non queued data), Event (queued signals) or
Event data (queued messages)

o Complex Connection hierarchies through components

o Timing

o Feature groups

 Data

o Optional but makes the analysis more precise

 Flows

o Logical flow of data and control

15

AADL Computer Components

 Processor / Virtual Processor –
Provides thread scheduling and

 Memory – provides storage for
data and source code

 Bus / Virtual Bus – provides
physical/logical connectivity
between

 Device – interface to external
environment

16

BUS Virtual Bus

Processor

Virtual Proc.

Memory

Device

AADL Computer Components

 ”Real” HW components

o Bus transmission time, latency,

o Processor timing, jitter

oMemory capacity

o Etc.

 Logical resources

o Thread scheduling of a processor

o Communication protocol overt network connection
(modeled as bus)

o Transactional memory (modeled as memory)

17

AADL Computer Components
 Processor

o As HW
• MIPS rating, size, weight, clock, memory manager

o As Logical resource
• Schedule threads  scheduling policies and interruption
• Execute SW

 Bus
o As HW

• Physical connection inside/between HW components

o As logical resource
• Protocol, which are used for the communication

 Memory
o Processes must be in memory
o Processors need access to memory

 Device Components
o Represents element that are not decomposed further
o Sensors/Actuators
o Device Driver

18

AADL Binding

 Binding

o Bringing SW models and the execution platform
together

o Virtual processors  can be subcomponents of other
virtual processors  ARINC653 partitioning

o Hierarchical Scheduling

o Virtual buses to physical ones

• One-to-one

• Many-to-one

19

Summary

 After 15 years of mainly DoD research it is getting
mature enough

 Many pilot project uses AADL

o FAA

o DoD

o Lockheed Martin

o Rockwell Collins (Steven P. Miller)

 Many research paper on formal analysis,
simulation and code generation

 Ongoing harmonization with SysML and MARTE

20

AUTOSAR

History
 AUTomotive Open System ARchitecture
 Started in 2002
 BMW, Bosch, Daimler, Conti, VW, + Siemens
 Industrial standardization group

o Current standard version: 4.0 (end 2009)
o Currently we use 3.1 (end 2008)

 Members: OEMs, Tool vendors, Semiconductor manufacturers Europe-
dominated

 Scope
o Modeling and implementation of automotive systems
o Distributed
o Real-time operating system
o String based interaction with HW and environment

 Out of scope
o GUI, Java, internet connectivity, File systems, Entertainment systems, USB

connectivity etc.

22

Key Concepts of AutoSAR
 A standard runtime architecture

o component-oriented
o layered
o extensible

• New functionalities
• New components (component implementations)

o all major interfaces standardized
o Standardized Run Time Environment (RTE)

 A standard modeling and model interchange approach
o follows the principles of model-driven design
o supports the interchange of designs
o supports the collaborative development

• Between different developers,
• Teams,
• And even companies

 Conformance test framework
o assuring the conformance to the standard
o Still evolving – new in version 4.0

23

High-level design flow

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level software modeling
• Definition of

• components
• component ports
• port interfaces
• data types – logical

• Result
• Virtual Functional Bus (VFB)-level
software model

High-level design process
Component
Model (VFB)

High-level
SW modeling

Detailed
Component

Design
Component

Internal
Behavior

Detailed component design
• Specification of

• component internal behavior
• functional breakdown
• implementation/use of ports

• Non-AutoSAR
• specification of detailed behavior
• any tool can be used

• UML
• Simulink
• etc.

• Result
• AutoSAR component internal behavior
model
• Non-AR: behavioral models/design

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

Detailed
Component

Design
Component

Internal
Behavior

High-level hardware modeling
• Specification of

• Electronic Control Unit (ECU) resources
• CPU
• memories
• peripherals
• communication hw

• system topology
• ECU instances
• clusters
• connections

• Result
• ECU resource model – for all ECUs
• System topology model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Hardware-software integration
• mapping

• software component allocation
• component implementation selection
• data-element to signal mapping

• inter-ECU communication
• communication configuration

• signal to Protocol Data Unit (PDU) mapping
• PDU to frame mapping
• Signal, PDU, Frame triggering
• Cluster and controller configuration
• Frame scheduling (LIN, FlexRay)

• Result
• System model describing the integrated
HW/SW system

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Component implementation
• Implemeting all components

• automatically
• TargetLink
• Simulink Realtime workbench
• SCADE
• etc.

• manually
• Result

• implementation of the components
• C/C++/…

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

ECU configuration
• Configuring all basic software modules

• based on the system model
• for each ECU separately

• Result
• ECU configuration model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation Basic Software Services (BSW) configuration

generation
• Configuration generation for basic software

• from the configuration model
• Result

• Configuration files (c,h)
• Generated modules/module fragments

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Compilation and linking
• Building and linking all sources

• application component implementations
• basic software modules
• BSW configuration files

• Result
• Deployable binary file

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Models in the design flow

 Software Component Template

o Components, ports, interfaces

o Internal behavior

o Implementation (files, resource consumption, run time,
etc.)

 ECU Resource Template

o Hardware components, interconnections

 System Template

o System topology, HW/SW mapping

o Comm. matrix

Models in the design flow 2

 Basic Software Module Template

o BSW modules
• Services

• Schedulable entities

• Resource consumption

 ECU Configuration Parameter Definition Template

o Configurable parameters of BSW modules

 ECU Configuration Description Template

o Actual configurations of BSW modules

o Based on the ECU Parameter Definition

AUTOSAR vs. UML/SysML/... modeling

 AUTOSAR defines models with

o Domain Specific Constructs

o Precise syntax

o Synthesizable constructs
• Direct model -> transformations

• Direct model -> detailed model mappings

o Different abstraction levels
• From Virtual Function Bus to configuration

 Result

o Models are primary design and implementation artifacts
• More precise, consistent modeling should be done

AUTOSAR Components

Component-oriented design

 What is a component?
o “A component is a self contained, reusable entity that

encapsulates a specific functionality (and/or data), and
communicates with other components via explicitly defined
interfaces.”

 AUTOSAR uses the term component for application-level
components

o Elements related to the high-level functionality of the system
under design

 Basic software (middleware) components are called modules.

o Standard elements of the AUTOSAR architecture

Component-based approach

Component

Component

• Encapsulates a specific functionality
• Different kinds

• Composite component – hierarchical refinement
• Application SW component – generic, high level functionality
• Sensor/actuator SW-C – handling sensor or actuator data
• ECU HW abstraction – higher level device driver and abstraction
• ComplexDeviceDriver – time-critical, low-level driver
• Calibration parameter SWC – collects system calibration
parameters
• Service SWC – represents a basic software module from the service
layer

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach

Component

Ports

• The only interaction points between the component and its
environment
• Are implementing port interfaces

• sender receiver (message-based unidirectional
communication)
• client-server (remote procedure call)

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach – port notation

Component

Receiver port Sender port

Server port Client port

Service port
To Basic Software (BSW)

Module services

Virtual Functional Bus

Component A

Component interconnection – the Virtual Functional Bus

Component B

Virtual Functional Bus (VFB)

• Abstract interconnection layer
• Implementation of data/control transport between components
• No hardware/network dependency
• Hides the details of the implementation

• Allows high-level integration and simulation of components
• Before hardware architecture is chosen

Component C Component X

…..

…..

Software Components

 On high-level, atomic components are black
boxes

 Detailed design “looks into” these black boxes

 Main goals

o Detail the behavior to get schedulable entities

o Specify the semantics of port handling

o Specify any service needs

o Specify any RAM, nvRam needs

Refinement of a component

Component

Comp.c Comp.h

Black box definition of a component

Definition of component internal
behavior
Schedulable entities, connections to
the ports

Component implementation.
Specification of source and header
files

Component internal behavior

 Specification of the internals of an atomic
SWC

 Schedulable elements

o Called: runnable entities

 Connection of ports

o Port semantics

o Port API options

 Inter-runnable communication

 Runnable activation and events

Component internal behavior – runnable entities

 Smallest code-fragments considered by RTE

 Subject to scheduling by the OS

 Abstraction of a schedulable function

 Communicates

o Using the SWC ports

o Using inter-runnable communication facilities

 Is activated by

o An RTE event

• Communication-related event

• Timing event

Summary of AUTOSAR

 AUTOSAR defines

o A component-oriented system design approach
• Domain specific modeling language

• A high level design process

• Standard middleware (basic software) stack

– Standard interfaces

– Standard configuration descriptors

 AUTOSAR compliant ECU software

o Includes several BSW and application components

o RTE provides the integration (glue) between these

o Configuration and glue code is mostly auto-generated

Case study

Modeling IT infrastructure using ArchiMate

IT system and infrastructure

 Challenge: find a modeling language that is not
too general neither too specific for a given domain

 Applies multi-level allocation

49

ArchiMate – infrastructure modeling

 The ArchiMate language defines three main layers
o The Business Layer offers products and services to

external customers, which are realized in the
organization by business processes performed by
business actors.

o The Application Layer supports the business layer with
application services which are realized by (software)
applications.

o The Technology Layer offers infrastructure services
(e.g., processing, storage, and communication
services) needed to run applications, realized by
computer and communication hardware and system
software.

50

ArchiMate example – big picture

 An example of a fictional Insurance company.

51

Business layer

Application layer

Technology layer

ArchiMate example: fictional Insurance company

 Business layer

52

Used by

Assignment

Realisation

Triggering

ArchiMate example: fictional Insurance company

 Application layer

53

Used by

Realisation

ArchiMate example: fictional Insurance company

 Technology layer

54

Association

Realisation

ArchiMate example – big picture

55

Used by
Used by –

across layers

Case study

Application of DSE for allocation

Motivating example: Smart Building

 Reconfiguration of supervising cyber-physical
systems (CPS)

o Offices to rent with highly
configurable services

o Services to deploy on both
embedded and virtual
computational units

o Requests may change over
time

o Certain faulty devices may no longer function

57

Design Space Exploration (DSE)

 Special state space exploration

o Potentially infinite state space

o cannot put upper bound on the number of model
elements used in a design candidate (elements are
created and deleted during exploration).

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

58

Rule-based Design Space Exploration

 Objectives : complex model metrics calculated by model
queries

 Cost calculations may depend on the seq. of transf. rules

 Multiple objectives

Design Space Exploration

Seq. of Transf.
Rules 1

Seq. of Transf.
Rules 2

Seq. of Transf.
Rules 3

Seq. of Transf.
Rules 4

Model queries as
Goals

Model queries as
Constraints

Transf. rules as
Operations

Initial Model as a
graph

Modified model

Operation

Initial model

Solution model

Constraints
violated

Goals
satisfied

59

Motivating example: Smart Building

60

Motivating example: Smart Building

Smart building: constraints

 Constraints

o Graph patterns to search for with model queries

o For smart buildings

• Constraints define valid or invalid configurations

Positive Positive Positive Negative

62

count

E:Requirement

unsatisfiedReq(E)

A:ApplInst

instances

M

check: R.count > M

R:Request reqs

AI:ApplInst

applInstStopped(AI)

check:
R.state != running

AI:ApplInst

unallocatedAppl(AI)

HI:HostInst

host NEG R:ResReq

AT:ApplType

HT:HostType

type

instance

reqs

hostType

AI:ApplInst

extraHost(H)

HI:HostInst

host NEG

Smart building: constraints con’t

 Constraints

o Constraint fulfillment

𝐶𝑜𝑛𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 𝑀 = 𝑤𝑝 ×𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑝,𝑀)

∀𝑝∈𝑃

𝐶𝑜𝑛𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 𝑀 =
1 × 2 + 0 × 3 + 0 × 4 + 1 × −1 = 1

Positive for well-formedness constraints
Negative for ill-formedness constraints

63

Smart building: rules

E:Requirement

rule newApplInst(E)

find
unsatisfiedReq(E)

NEW

AI:ApplInst

instances

2

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostType HI:HostInst

type

reqs

hostType

instances

host

check: AI.state==”STOPPED” &&
HN.availMem>RR.reqMem &&
HN.availHdd>RR.reqHdd

rule move(AI,HI,RR)

action:
HI.availMem +=RR.reqMem;
HI.availHdd +=RR.reqHdd;
HN.availMem -=RR.reqMem;
HN.availHdd -=RR.reqHdd;

HN:HostInst

host

NEW DEL

4

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostType HI:HostInst

type

reqs

hostType

instances

NEG

host NEW

check: AI.state==”STOPPED” &&
HI.availMem>RR.reqMem &&
HI.availHdd>RR.reqHdd

rule allocate(AI,HI,RR)

action:
HI.availMem -=RR.reqMem;
HI.availHdd -=RR.reqHdd;

3

AI:ApplInst AT:ApplType

RR:ResReq

HT:HostType HI:HostInst

type

reqs

hostType

instances

DEL

host

check: AI.state==”STOPPED”

rule delete(AI,HI,RR)

action:
HI.availMem +=RR.reqMem;
HI.availHdd +=RR.reqHdd;

3

rule stop(AI)

check: AI.state==”RUN”

AI:ApplInst 1

action: AI.state=”STOPPED”

HT:HostType

rule newHostInst(HT)

NEW

HI:HostInst

instances

?

action:
HI.availMem=HT.defMem
HI.availHdd=HT.defHdd

rule start(AI)

check: AI.state==”STOPPED”

AI:ApplInst 1

action: AI.state=”RUN”

HI:HostInst
host

Smart Building: configuration model
Services and Requests

(a) Services

(b) Two examples on company requests

Package Services Appl Types

Basic Fire Alarm Smoke Detect
MeasureTemp

Comfort + Air Cond + SetTemp

Secure + Security +MotionCheck
+VideoRecord

Max +HeatMap
R Packages AppInst HostInst

1 Comfort (2)
Basic(1)

3xSD, 2xMT,
2xST

3xSS,6xTS,
2xCS,

2 Max (2) 2xSD, 6xMT,
2xST, 2xMC,
2xVR, 2xHM

2xSS,6xTS,
8xCS, 2xIC,
2xVC,

Summary

References

 http://www.ptidej.net/courses/log3410/fall11/Lectur
es/Article_6.pdf

 https://hal.archives-ouvertes.fr/hal-
00110453/document

 http://pubs.opengroup.org/architecture/archimate2-
doc/toc.html

 https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-885j-aircraft-systems-engineering-
fall-2005/readings/sefguide_01_01.pdf

 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumb
er=1675654

68

https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
https://hal.archives-ouvertes.fr/hal-00110453/document
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1675654
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1675654

