Modeling Textual Requirements

Systems Engineering BSc Course

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform-based systems design

Platform g

del N
mode
Fault tolerance
& safety
/4
/l

’

HW/SW
allocation

Traceability

Component Architecture

behav. model model

Verification and Validation

code generation

Source code

ompiler
Linker

Learning Objectives

e Understand the role and major challenges of requirements
engineering in systems design

e Write precise textual requirements

e Understand requirements written by others

e Capture requirements using the SysML language
e Understand the goal of traceability

e |dentify relations between requirements

Use cases (System Functions)

e Understand the concepts of actors and use cases
e Capture system functions in use case diagrams
e |dentify relations between actors and use cases

Why are Requirements Needed?

Project Kick-off

" Business Case: Why the project is needed?
o Revenue? Units to be Sold?

= Constraints and Rationale:

o Time: deadlines, iteration cycles

o Budget & Costs: HW, unit cost, development
= Glossary / Terms:

o ldentify existing documents, standards

o ldentify experts: who knows what?

o Prepare inventory

= Teams
" Context (see: use case diagrams)
= Requirements

Teams

= Customer team = Development team
o Product manager o Systems engineers
o Systems engineers o Software engineers
o Business analyst o Hardware/computer
o Acceptance testing engineers
o Customer service, End user o Mechanical, etc.
o Role: o Role:
* We want this (one voice!) * Implement features upon

customer demand

= Stakeholders:

* Give advise on feasibility
= Expert

o Knows technical details of
how something works

o Expensive and busy

o Anyone interested in the
project

o Regulation bodies
o Competitors
o Other managers / divisions ...

Types of Communication

Email Multiple Unidirectional Asynchronous
Phone call Two Full duplex Synchronous
Instant messaging Two/Multiple Nearly full duplex Asynchronous
Group chat Multiple At will Asynchronous
Web meeting Multiple Full multiplex Synchronous
(Scheduled)
Shared screen Few Full duplex Synchronous
Whiteboard Multiple At will Asynchronous

Face-to-face meeting is most effective, but: 7In your homework:

* large overhead and effort: takes everyone’s time * Joint team meetings
« geographical distribution (during course slot)
« long product life-cycle: people no longer there 8 * Basecamp + Slack

* Magic Draw team server
* Skype, telephone, etc.

What is a Requirement?

Definition, types, traceability

Definition of a Requirement

= Definitions

o A condition or capability a system must conform to
(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

= Each requirements needs to be
o ldentifiable + Unique: unique IDs
o Consistent: no contradiction

o Unambiguous: one interpretation
o Verifiable: e.g. testable to decide if met

= Captured with special statements and vocabulary

The Certification Perspective: High-level vs Low-Level

HLR DR

SA) LLR

DR

N

SC

I

OC

Concepts from DO-178C standard

High-level Requirements (HLR):
o customer-oriented
o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

Derived Requirements (DR)

o Capture design decisions

o Derive from customer regs
Low-level Requirements (LLR):

o SC can be implemented without
further information

Software Architecture (SA)

o Interfaces, information flow of SW
components

Source Code (SC)
Executable Object Code (EOC)

Functional vs Extra-functional

Functional The train shall close its

doors upon remote
e Core technical goal request by the operator

Extra-functional The closing of doors should

take no more than 4 sec

e Performance : .
The mechanism operating the doors

* Dependability shall endure 5 years of continuous

use without maintenance
° Safety The door must never hurt

e Securit a passenger when closing

A secure cover shall protect the
mechanism against vandalism

Functional vs Extra-functional

= Typical scope (not always true)
o Functional req.: specific to a given component
o Extra-functional: fulfilled by the system as a whole

" Derivation possible across different kinds

o Customer HLR safety:
»1he door must never hurt a passenger when closing”

9

o Derived HLR functional:
,The door must be able to detect obstruction”

Functional vs Extra-functional

= Typical scope (not always true)
o Functional req: specific to a given component
o Extra-functional: fulfilled by the system as a whole

= Derivation possible across different kinds

o Customer HLR safety:
»1he door must never hurt a passenger when closing”

9

o Derived HLR functional:
,The door must be able to detect obstruction”

How to Write Requirement?

Good practices and antipatterns

Good practices for writing textual requirements

= A textual requirement contains
o a short description(stand-alone sentence / paragraph)
o of the problem and not the solution

= English phrasing:

o Pattern: Subject Verb Conditions
* Example:
The railway operator create

between any two points on the track
o Be precise! (Quantitative is better than qualitative)
o Avoid passive sentences

= Use of auxiliaries:
o Positive: shall/must > should > may

o Negative: must not > may not
o They specify priorities!

Examples

Dependabilty

e The operator shall be able to change the * The allowed downtime of the system
direction of turnouts should be less than 1 hour per year

* Train equipments shall periodically log e The system shall continue normal
sensor data with a timestamp operation within 10 minutes after a

failure

CX v

* The system shall ensure safe traffic within a Supportability:

zone e The system shall allow remote access for
e The system shall stop two trains if they are maintenance

closer than a minimal distance]
e No single faults shall result in system failure Security:
Performance: e The system shgll provide remote access
only to authorized personnel

e The system should allow five trains per .
every 10 minutes Usability:

e The user interface should contain only 3
alerts at a time

Anti-patterns
1. The system should be safe

2. The system shall use Fast

Fourier Transformation to : Describes a solution
calculate signal value. (and not only the problem)

3. The system shall continue
normal operation soon
after a failure.

Imprecise
(how to verify ,soon”?)

Passive should be avoided!
Use specific auxiliaries!

How to identify missing or

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the

inconsistent requirements?

Modeling Requirements in SysML

SysML overview, Requirements Diagram

Roots & Relations

= Document based system development
o Formulated requirements textually (e.g. in Word)
o Handled by Reg. management tools (e.g. DOORS)

. - b
L] Pagelayout Refersnces Mailings R @
O allenge e T e
E uier ocument W } (Jone Page few Side by Side
L] El 9 3 ({ o) v -
Gridlines Thumbnails =l [Two pages AL 5 Scrolling =
Print |Full Screen Web Outline Draft Zoom 1003 New Arange Spiit Suitch | Macros
Layout | Reading Layout Message Bar = Page Width | window Al & on | Windows~ || -
ShowHide. 2o0m Macros
E R RN IR SRR SR SRR AR IR S b A

agricultural system

B-| @ Next Gen Car

ineered systems comprising interacting physical and

omputation and communication are deeply embedded in and
add new capabilities and characteristics to physical systems.

Y
.| 217: Model ESX

ple case-studyfrom the agriculture domain.

gh-level)
Itural system (CPAS), which helps a farmer with his/her

b Filter ..} ‘e the environment and react to its changes by using automated
> [— i spraying.
L Name i . B
| ing the environment through its sensors.

(3 aniractype
3] Last modified by temperature, humidity, luminance, rain.

=] Last modified on: thange its surrounding environment.

=] More attributas | N

ation and spraying.
4| Linked artifacts
ot mower to execute its programmed task.

ithout any problem it returns to its refueling station.

;cs task, it sends a notification about its status.

SysML overview (System Modeling Language)

= _UML for Systems Engineering”

o Supports the specification, analysis, design, verification and
validation of systems that include hardware, software, data,
personnel, procedures, and facilities

= Developed by OMG and INCOSE (International Council on
Systems Engineering)

= OMG SysML™ (http://www.omgsysml.org)

o RFP —March 2003

o Version 1.0 — September 2007
o Version 1.1 — November 2008
o Version 1.2 —June 2010

o Version 1.3 —June 2012

o Version 1.4 — September 2015
o Version 1.5 —May 2017

http://www.omgsysml.org/

SysML good to know

= SysML is for interdisciplinary systems

= Examples for systems:
o Railway, Automobile, Spacecraft, Factory, etc.
o Thirty Meter Telescope is designed with SysML (tmt.org)

= SysML is only a language, how it is used is another
guestion — model only what is important

= Methodologies (recommendations, best practices)

o SYSMOD
o NASA System Engineering Handbook

o OOSEM (Object-Oriented Systems Engineering Method)
o ESEM (Executable System Engineering Method)

http://www.tmt.org/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301.pdf
http://magedelaasar.com/wp-content/uploads/2016/06/ESEM_v3.pdf

Recommended materials

= Books

o Tim Weilkiens:
* SYSMOD — The System Modeling Toolbox
* Systems Engineering with SysML/UML (older version)

o Sanford Friedenthal, Alan Moore, Rick Steiner:
A Practical Guide to SysML

* More precise with the syntax, good examples, practices
= Web pages
o http://www.uml-diagrams.org/

* Good references to notations, but only UML

http://www.uml-diagrams.org/

Relationship Between SysML and UML

1 ‘I \ \
4 f"i
“\5,ﬁﬂﬁaﬂfﬂ?'
o e
T
o
e
e
et
e

...‘... SysML

T w o extensions to

UML
not required -
by SysML
(UML -
UMLA4SysML)

Requirements Diagram

Diagram
| | UNIFIED
Structure Behaviour MODELING
Diagram Diagram
5 LANGUAGE -
[I I
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Cs?cm DESitE Deployment | Package Interaction M5tﬂﬁf
Diagram Dirg;rauﬁ? Diagram Diagram Diagram DiE;I:;rIEﬁ
i)
_ I
— Sequence || Communication lBtféFEiEE;n Timing
Hatation: UML Diagram Diagram Diagram Diagram
SysML Diagram
[I
Behavior ‘ Requirement Structure
Diagram Diagram Diagram
lr\, A
[I [I
Activity Sequence State Machine l Use Case Block Definition Internal Block Package
% Diagram Diagram Diagram Diagram Diagram Diagram Diagram

OMG !% oA T

SYSIE“S] Pavnotdc 1

MODELING - TR il

LANGUAGE

| Modified from umL 2 |

(o |
[WpSegbiipitnt shui /SRR |

Main Goal of Requirements Diagram

What are the main textual requirements?
What is their hierarchy?

T)

«comments

infrastructure, and system.

See glossary for concepts such as train,

arequirements

Operate railway infrastructure

1=
Text = "Railway operator shall operate
and control track elements.”

«requirements s
NFT"_C" coversoe Stopping trains |
KETLE ld="F1.2"

Text = “The railway operator
shall be able to create a
direct route between any
two arbitrary point of the
complete track "

T

Text = “The infrastructure
shall be able to stop the
trains overriding their
current control.*

“Multiple control
devices may coexist that
can issue commands for
the track "

erequrements
Command synchronization
ld="F1.131"
“The connecting

Texd

controllers shall be aware
of each issued control
command.*

«requirements
Controllability of turnouts
d="F1.1.1"

Text = “The operator should
be able to change the
directions of the tumouts.”

——

erequrements
Heartbeat signal

Text = "The infrastructure
equipments shall provide
periodic heartbeat signals
every one second”

erequrements
Lack of heartbeat signal

ld="F21.1"

Text = "The infrastructure
shall intiate emergency stop
of both trains after missing
three consecutive heartbeat
signals.”

Functionality ‘
.
«requrements arequrements
prr— ‘
Health monitoring Transport cargo Traceability
1d="F2" Fﬂ P4 1d="F3
=X Text = “The system shall be Text = “The system shal
;::e!& "aT:.BS ?ﬁ:m shall abie to transport and deliver provide traceabilty
< cargo” information during
equipments ‘ pien
w T = -
|
! ot tar and centinaton of e ey
erequirements arequirements SE afart sk des iaation of Controllabilty of trains o =
Self test at startup Continuous monitoring == S0, R 7V S—— :‘;“‘?"'“ ks ks
[? 1d="F3.1"
\a="F22 1d="F23" % Text = “The operator should
Text = “The ciient shall be
Text = “The system shall Text = "The system shall be Sk 40 26k e picktp e be able to control the s a;“;;ﬁ":’;,’:;‘g‘;"
o s Selftest at each bl dle kg ks i itiniion of tho icion ot speet o the 6 auithor Qs et &
artup operatior iy ains tenestama”
kil «requrements arequirements <requrements arequirements arequirements
g R Observing trains Observing track Reconfiguration Train speed Train direction
o F?TZH; e 1d="F231 10="F41T 1d="F422 [la="Fa21
s e s o Text = “The onboard et = “The infrastruciure Text = "The user shall be Text = The operator should Text = "The oprator shouid
e blatdelaiglatoy equipment on trains shall shall report track occupancy able to change the be able to control the be able to change the
eyl report measured information.” destination while in transit " speeds of the trains * [arectons o the trans”
parameters*

«requirements
Logging infrastructure
events

1d="F32"
Text = "The infrastructure
equipments shall log each
segment information with a
timestamp.”

SysML Example — Requirements

req [Package] Functionality [Transportation lJ

Requirement

«requirement»
Transport cargo
Id="F4"

Text = "The system shall be
able to transport and deliver
cargo."

Requirement
decomposition

I
«reguirements srequirements
ha - Set start and destination of
Controllability of trains cargo
Id="F4.2" - =
E i Id="F4.1
T:"‘Iz bT “eé’ o Sy 2 Text = "The client shall be
tsh OLC’ﬁ C‘E aine g o 'do ; able to set the pickup site
the t o '?n A Spest.o and destination of the
e trains. cargo.”
I T
«requirement» «requirement» «requirements»
Train speed Train direction Reconfiguration
Id="F4.2.2" Id="F4.2.1" Id="F4.1.1"
Text = "The train driver Text = "The train driver Text = "The user shall be
should be able to control should be able to change able to change the
the speeds of the trains.” the directions of the trains" destination while in transit."

The Concept of Traceability

Where to check whether req. is satisfied?

" Traceability is a core

certification concept m-/’ ?

o For safety-critical systems VALUE

O See Safety Standards (DO_ ':h_ar}r_push{‘JALUE ary, VALUE item)
178C, ISO 26262, EN 50126)

rb ary modify(ary);
return rb_ary push_l(ary, item);

= Forward traceability: }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

The Concept of Traceability

" Tracea b|||ty IS a core Which regs to watch when modifying this part?
certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

VALUE
" rb_ary push(VALUE ary, VALUE item)
{

rb ary modify(ary);

? return rb_ary push_l(ary, item);
" Forward traceability: . }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility

= Backward traceability:

o From any lines of source code
to one or more corresponding
requirements

o No extra functionality

if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

The Concept of Traceability

= Traceability is a core ng this part?

certification concept Even if not end-to-end!
* REQ <> Design

Design <> Code , VALUE item)
® EtC. I

h 1(ary, item);

o For safety-critical systems

o See safety standards (DO-
178C, 1SO 26262, EN 50126)

" Forward traceability:

o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

o Show responsibility

= Backward traceability:

o From any lines of source code
to one or more corresponding
requirements

o No extra functionality

Relations between Requirements

Trace
o General trace relationship
o Between requirement and any other model element
Refine
o Depicts a model element that clarifies a requirement
o Typically a use case or a behavior
Derive
o A requirement is derived from another requirement by analysis or decision
o Typically at the next level of the system hierarchy
Copy
o Supports reuse by copying requirements to other namespaces
o Master-slave relation between requirements
Satisfy

o Depicts a design or implementation model element that satisfies the
requirement

Verify
o Used to depict a test case that is used to verify a requirement

Examples of Relations between Requirements

«requirement»
Maximum Acceleration

ld ="1.4.8"

Text = “The vehicle shall
accelerate from 0-60 mph
in less than 8 seconds
under specified conditions”

«requirement»
Engine Power

«deriveReqt»

Id="2.1"

Text =“The max engine
horsepower shall be
greater than ...”

bdd [Package] & - Traceability [Reﬁnementu

«reguirement»
Controllability of turnouts

id="F1.1.1"

Text = "The operator should
be able to change the
directions of the turnouts.”

arefines

Operate turnouts =

arefines

«activity»

Switching turnout

Traceability of Requirements in SysML Models

<<refine>>

Requirements

<<satisfy>>

Use Cases

<€

<<verify>>

Block
diagrams

Test Cases

Requirements Relations in Table

24

25

26

27

29

3

32

Id Name Text Traced To
The system shall choose one of the cheapest ways of A SAFE_1 Safe traffic
Pl A Cost efficiency delivering the cargo to the destination in a safe way.

The delivery of the cargo shall be as fast as the safe operation [A P1 Cost efficiency
F2 A Swift delivery of the railway allows and the route is economical. [R2 High availability

Allowed downtime of the system is one hour per year.
R2.1 A Low downtime

The system should continue normal operation withi HH
R2.2 CH Fast recovery hours after a failure. (MTTR = 8h) Tra ced b I I Ity
The transportation system shall provide its services | | n kS
R2 @ High availability

The system shall provide remote access to the staff
51.1

H ie ra rC h ica I nnel only with extra authority may access the system.
numbering

51.2 T access

51.2.1

enance staff should access the system securely.

There shall be access points for the system for maintenance
51 7 Maintainability and update.

The infrastructure shall ensure safe traffic within a zone.
SAFE_1. [Safety within a zone

Modeling System Functions with

Use Cases

Use Case Diagrams, System Context, Actors

Use Case Diagrams

Diagram
| | UNIFIED
Structure Behaviour MODELING
Diagram Diagram
5 LANGUAGE -
[I
Class Component Object Activity, Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Cs?cm DESitE Deployment | Package Interaction M5tﬂﬁf
Diagram Dirg;rauﬁ? Diagram Diagram Diagram DiE;q:;rlaﬁ
i)
| _ |
— Sequence || Communication lBtféFEiEE;n Timing
Hatation: UML Diagram Diagram Diagram Diagram
SysML Diagram
A
l RIS PR |
Behavior ¢ Requirement Structure
Diagram : Diagram | Diagram
"""" A
[| 71 O\ |
Activity Sequence State Machinel Use Case Bigck Definition Internal Block Package
% Diagram Diagram Diagram Diagram Diagram Diagram Diagram
OMG !% oA T
SYSIE“S] Pavnotdc 1
ram
MODELING - TR il
LANGUAGE

| Modified from umL 2 |

(o |
[WpSegbiipitnt shui /SRR |

System Context

Who will use the system?

bdd [Package] 2 - Smart transportation system context[System context JJ
2,
stakeholder:
?\ RailwayOperator
. S TrainData,
«stakeholders TrackMonitoringData
Client is
astakeholders
TrainDriver
TrackCentrolComman
RouteSpecification TrainControlCommand
«system» @
SegmentOccupationSensor SmartTransportation SegmentActuator
LeapMotionSensor TurnoutActuator

| emremr

iz

Turnou tSensor
) 7
Webcamera '
Snow

= Context diagram
o System
o Its boundaries
o External entities

o Incoming / outgoing
* Information (data) flow
e Control flow

= What form?

o Whiteboard drawing

o SysML blokkdiagram
(context diagram)

o BDD or IBD

SysML notation: Actors and External systems

bdd [Package] 2 - Smart transportation system context[System context JJ

Xy

Informatlon «stakeholder»
RailwayOperator
%S f|OW TrainData,
«stakeholders TrackMonitoringData
Client % S
Feedback «stakeholders
TrainData TrainDriver
TrackCentrolComman
RouteSpecification TrainControiCommand
«systemy
segmentm%mw//}tmns"°\"‘“'°Qenm“um,
LeapMotionSensor TurnoutActuator

— External system
(anything as a box)

TurnoutSensor

)

Webcamera

;?fw h Environmental
effect

Use cases

Who will use the system and for what?

uc [Package] 3 - Use cases [System use cases lJ

Secondary

Smart transportation system

actor

Primar %
aCtOry il Cﬂrg_0> «stakehr?lder»

~ -
\«lnclude»
~

TrainDriver

Operate railway track
elements

%s/

«stakeholdery

Client
g

AutomaticDriver

siichdes ~~ Monitor track \%S
/ status / «stakeholders
: RailwayOperator

System
boundary

/ Monitor train

position

Definition of Use Cases

" Use case (hasznalati eset) captures a main functionality
of the system corresponding to a functional requirement

= UCs describe
o the typical interactions

M. Fowler: UML Distilled.

o between the users of a system and 3rd Edition. Addison-Wesley

o the system itself,
o by providing a narrative of how a system is used

= A set of scenarios tied together by a common user goal

" Language template: Verb + Noun (Unique)!

o Example: Drive train, Switch turnout

Use Case Descriptions

= Additional textual description to detail use cases
o Preconditions: must hold for the use case to begin

o Postconditions: must hold once the use case has
completed

o Primary flow: the most frequent scenario(s) of the use
case (aka. main success scenario)

o Alternate flow: less frequent (or not successful)
o Exception flow: not in support of the goals of

the primary flow

* Elaborated behavior in SysML (discussed later)
o Activity diagrams: scenarios with complex control logic
o Interaction diagrams: for message based scenarios

Definition of Actors

= Actor (aktor, szerepl@) is a role that a user plays with
respect to the system.

o Primary actor: invokes the system to deliver a service

o Secondary actor: the system communicates with them while
carrying out the service

= An actor is outside the boundary of the system
" Characteristics:

o One person may act as more than one actor
* Example: The farmer may also act as a laborer who performs the
spraying
o Can be an external subsystem (and not a person)

Relations between Actors and Use cases

uc [Package] 3 - Use cases[System use cases 1)

Smart transportation system

o
Transport cargoj «stakeholders

TrainDriver

A use case may be B
performed by several actors ||

%s/

«stakeholders
Client

B
An actor may perform

4 many use cases
position : “‘
Association:

* primary actor initiates or
* secondary actor participates in interaction
e (rarely between 2 actors)

S
xStarenolders
RailwayOperator

Relations between Two Actors

uc [Package] Stakeholders[Stakeholders JJ ACtor Generalization:

 any subactor can perform

2. Q. use case

stakeholder
ol «stakeholder» * access control (groups)
RailwayStaf
/% | | |
N ‘/%s %s %s %s
«stakeholder» . stakeholder» «stakeholder» «stakeholders» «stakeholder»

Government TrainDriver RailwayWorker RailwayOperator CertificationAuthority

How to handle complex functionality?

Transport cargo

Transport cargo =
*Operate turnouts
*Drive train

Refinement with include relation

Base UC

Operate railway
track elements

a:includex_-___ _

—
—
—

Transport cargo _
_ ct_lllclude:-:-

—
—

The included UC

breaks down the complex
core functionality into
more elementary steps

Generalization of UCs

Transport cargo

Use Case
Generalization
(Inheritance)

Transport
hazardous m aterial

Transport food

Transport deep-
forzen goods

What happens if
e the selected route of transportation
is blocked?

Extend relationship

Find alternate route

Y
gextend»

Transport cargo

The extension UC
Extends core
functionality by
handling unusual
(exceptional) situation

Overview of UC Relations

Association

e Actor — use case (rarely: actor — actor)
e an actor initiates (or participates in) the use of the system

Generalization

e actor — actor OR use case — use case
e a UC (or actor) is more general than another UC or actor

Includes

® Use case — use case
e a complex step is divided into elementary steps
e a functionality is used in multiple UCs

Extend

® Use Case — use case

e a UC may be extended by another UC
e typically solutions for exceptional situations

Traceability of Use Cases in SysML Models

Requirements

System
Context

<<refine>>
<<refine>> <<refine>> Activity
< Use Cases < Diagrams
<<satisfy>>
Block

Diagrams

Good practices of UC analysis

Good practice: Grouping

= Grouping UCs - —

o ldentify functional building blocks

o Group them into packages 1

o NOTE: related by functionality,

NOT by role)
Monitoring
(|
] Transportation

= Grouping actors:

o Dedicated (top-level) , Actors” package OR

o Keep actors in a package within
the subsystem they exclusively belong to

Good practice: Naming and arrangement

= Actors

o Name actors according to their roles and
avoid using job titles

o Divide complex roles into multiple actors

o Start the diagram by placing the most important actor
in the top left corner

= Use Cases
o Use domain specific verbs for UCs
o Avoid technical descriptions —

Main guideline:
UC diagrams
should be SIMPLE

UCs are frequently for non-technical reader

= Relationships
o Avoid crossing or curved lines when drawing relations
o Use <<extend>> and <<include>> relations ,lightly”
o Place them into the appropriate functional block

Summary

| Definition of a Requirement |

= Definitions

o A condition or capability a system must conform to
(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

* Each requirements needs to be
o Identifiable + Unique: unique IDs
o Consistent: no contradiction
© Unambiguous: one interpretation
o Verifiable: e.g. testable to decide if met
* Captured with special statements and vocabulary

| Definition of Use Cases |

= Use case (hasznalati eset) captures a main functionality
of the system corresponding to a functional requirements

= UCs describe
o the typical interactions

M. Fowler: UML Distilled.

o between the users of a system and ard Edition. Addison-Wesley

o the system itself,
o by providing a narrative of how a system is used

= A set of scenarios tied together by a common user goal
= Language template: Verb + Noun (Unique)!

o Example: Drive train, Switch turnout

| The Concept of Traceability |

= Traceability is a core
certification concept

o For safety-critical systems R1.1 VALUE
[rb_ary push(VALUE ary, VALUE item)

o See safety standards (DO- \- <
178C, 1SO 26262, EN 50126) rb_ary modify(ary); .
? return rb_ary push_l(ary, item);

= Forward traceability: : K
o From each requirement to the _ static VALUE

. . rb_ary push 1(VALUE ary, VALUE item)
corresponding lines of source <

code (and object code)
o Show responsibility

= Backward traceability: }

RARRAY PTR(ary)([idx) = item;
ARY_SET_LEN(ary, idx + 1);
return ary;

long idx = RARRAY LEN(ary);

if (idx >= ARY CAPA(ary)) {
ary_double_capa(ary, idx);

o From any lines of source code
to one ore more ~
corresponding requirements

o No extra functionality

Definition of Actors

= Actor (aktor, szerepld) is a role that a user plays with
respect to the system.
o Primary actor: invokes the system to deliver a service
o Secondary actor: the system communicates with them while
carrying out the service
= An actor is outside the boundary of the system
= Characteristics:

o One person may act as more than one actor
* Example: The farmer may also act as a laborer who performs the
spraying
o Can be an external subsystem (and not a person)

