
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Modeling Textual Requirements

Systems Engineering BSc Course

2

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generation

HW library

Requirements

Fault tolerance
& safety

generation

Learning Objectives

Requirements

• Understand the role and major challenges of requirements
engineering in systems design

• Write precise textual requirements

• Understand requirements written by others

• Capture requirements using the SysML language

• Understand the goal of traceability

• Identify relations between requirements

Use cases (System Functions)

• Understand the concepts of actors and use cases

• Capture system functions in use case diagrams

• Identify relations between actors and use cases

3

Why are Requirements Needed?

Project Kick-off

 Business Case: Why the project is needed?
o Revenue? Units to be Sold?

 Constraints and Rationale:
o Time: deadlines, iteration cycles
o Budget & Costs: HW, unit cost, development

 Glossary / Terms:
o Identify existing documents, standards
o Identify experts: who knows what?
o Prepare inventory

 Teams
 Context (see: use case diagrams)
 Requirements

5

Teams
 Customer team

o Product manager

o Systems engineers

o Business analyst

o Acceptance testing

o Customer service, End user

o Role:
• We want this (one voice!)

 Stakeholders:
o Anyone interested in the

project

o Regulation bodies

o Competitors

o Other managers / divisions …

 Development team
o Systems engineers

o Software engineers

o Hardware/computer
engineers

o Mechanical, etc.

o Role:
• Implement features upon

customer demand

• Give advise on feasibility

 Expert
o Knows technical details of

how something works

o Expensive and busy

6

Types of Communication
How many people? Direction? Style?

Email Multiple Unidirectional Asynchronous

Phone call Two Full duplex Synchronous

Instant messaging Two/Multiple Nearly full duplex Asynchronous

Group chat Multiple At will Asynchronous

Web meeting Multiple Full multiplex Synchronous
(Scheduled)

Shared screen Few Full duplex Synchronous

Whiteboard Multiple At will Asynchronous

7

Face-to-face meeting is most effective, but:
• large overhead and effort: takes everyone’s time
• geographical distribution
• long product life-cycle: people no longer there

In your homework:
• Joint team meetings
(during course slot)
• Basecamp + Slack
• Magic Draw team server
• Skype, telephone, etc.

What is a Requirement?

Definition, types, traceability

Definition of a Requirement

 Definitions
o A condition or capability a system must conform to

(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

 Each requirements needs to be
o Identifiable + Unique: unique IDs

o Consistent: no contradiction

o Unambiguous: one interpretation

o Verifiable: e.g. testable to decide if met

 Captured with special statements and vocabulary

9

The Certification Perspective: High-level vs Low-Level
 High-level Requirements (HLR):

o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

o Derive from customer reqs

 Low-level Requirements (LLR):
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard

Functional vs Extra-functional

Functional

• Core technical goal

Extra-functional

• Performance

• Dependability

• Safety

• Security

• …

11

The train shall close its
doors upon remote

request by the operator

The closing of doors should
take no more than 4 sec

The mechanism operating the doors
shall endure 5 years of continuous

use without maintenance
The door must never hurt
a passenger when closing

A secure cover shall protect the
mechanism against vandalism

Functional vs Extra-functional

 Typical scope (not always true)

o Functional req.: specific to a given component

o Extra-functional: fulfilled by the system as a whole

 Derivation possible across different kinds

o Customer HLR safety:
„The door must never hurt a passenger when closing”

o Derived HLR functional:
„The door must be able to detect obstruction”

12

Functional vs Extra-functional

 Typical scope (not always true)

o Functional req: specific to a given component

o Extra-functional: fulfilled by the system as a whole

 Derivation possible across different kinds

o Customer HLR safety:
„The door must never hurt a passenger when closing”

o Derived HLR functional:
„The door must be able to detect obstruction”

13

How to Write Requirement?

Good practices and antipatterns

Good practices for writing textual requirements

 A textual requirement contains
o a short description(stand-alone sentence / paragraph)
o of the problem and not the solution

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions

• Example:
The railway operator shall create a direct route
between any two points on the track

o Be precise! (Quantitative is better than qualitative)
o Avoid passive sentences

 Use of auxiliaries:
o Positive: shall/must > should > may
o Negative: must not > may not
o They specify priorities!

16

Examples

Functional:

• The operator shall be able to change the
direction of turnouts

• Train equipments shall periodically log
sensor data with a timestamp

Safety:

• The system shall ensure safe traffic within a
zone

• The system shall stop two trains if they are
closer than a minimal distance

• No single faults shall result in system failure

Performance:

• The system should allow five trains per
every 10 minutes

Dependability:

• The allowed downtime of the system
should be less than 1 hour per year

• The system shall continue normal
operation within 10 minutes after a
failure

Supportability:

• The system shall allow remote access for
maintenance

Security:

• The system shall provide remote access
only to authorized personnel

Usability:

• The user interface should contain only 3
alerts at a time

17

Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system

18

Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

Modeling Requirements in SysML

SysML overview, Requirements Diagram

Roots & Relations

 Document based system development

o Formulated requirements textually (e.g. in Word)

o Handled by Req. management tools (e.g. DOORS)

o Challenge: complexity

20

SysML overview (System Modeling Language)

 „UML for Systems Engineering”
o Supports the specification, analysis, design, verification and

validation of systems that include hardware, software, data,
personnel, procedures, and facilities

 Developed by OMG and INCOSE (International Council on
Systems Engineering)

 OMG SysML™ (http://www.omgsysml.org)
o RFP – March 2003
o Version 1.0 – September 2007
o Version 1.1 – November 2008
o Version 1.2 – June 2010
o Version 1.3 – June 2012
o Version 1.4 – September 2015
o Version 1.5 – May 2017

21

http://www.omgsysml.org/

SysML good to know

 SysML is for interdisciplinary systems

 Examples for systems:

o Railway, Automobile, Spacecraft, Factory, etc.

o Thirty Meter Telescope is designed with SysML (tmt.org)

 SysML is only a language, how it is used is another
question – model only what is important

 Methodologies (recommendations, best practices)

o SYSMOD

o NASA System Engineering Handbook

o OOSEM (Object-Oriented Systems Engineering Method)

o ESEM (Executable System Engineering Method)

22

http://www.tmt.org/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301.pdf
http://magedelaasar.com/wp-content/uploads/2016/06/ESEM_v3.pdf

Recommended materials

 Books

o Tim Weilkiens:

• SYSMOD – The System Modeling Toolbox

• Systems Engineering with SysML/UML (older version)

o Sanford Friedenthal, Alan Moore, Rick Steiner:
A Practical Guide to SysML

• More precise with the syntax, good examples, practices

 Web pages

o http://www.uml-diagrams.org/

• Good references to notations, but only UML

23

http://www.uml-diagrams.org/

Relationship Between SysML and UML

UML 2

UML 2

Reuse

(1, 2)

UML

reused by

SysML

UML

not required

by SysML

(UML -

UML4SysML)

SysML

extensions to

UML

SysML

24

Requirements Diagram

25

Main Goal of Requirements Diagram

What are the main textual requirements?

What is their hierarchy?

26

SysML Example – Requirements

27

Requirement
Name

Id

Text
Requirement

decomposition

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

28

R1.1

R2.1

R3.2

R1.2 ?
Where to check whether req. is satisfied?

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one or more corresponding
requirements

o No extra functionality

29

R1.1

R3.2

?

R2.1

Which reqs to watch when modifying this part?

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one or more corresponding
requirements

o No extra functionality

30

R1.1

R3.2

?

R2.1

Which reqs to watch when modifying this part?
Even if not end-to-end!
• REQ ↔ Design
• Design ↔ Code
• Etc.

Relations between Requirements
 Trace

o General trace relationship
o Between requirement and any other model element

 Refine
o Depicts a model element that clarifies a requirement
o Typically a use case or a behavior

 Derive
o A requirement is derived from another requirement by analysis or decision
o Typically at the next level of the system hierarchy

 Copy
o Supports reuse by copying requirements to other namespaces
o Master-slave relation between requirements

 Satisfy
o Depicts a design or implementation model element that satisfies the

requirement

 Verify
o Used to depict a test case that is used to verify a requirement

31

Examples of Relations between Requirements

32

Refine Refine

Derive

Traceability of Requirements in SysML Models

33

Requirements

Use Cases

Test Cases

Block
diagrams

<<refine>>

<<verify>>

<<satisfy>>

Requirements Relations in Table

34

Hierarchical
numbering

Traceability
links

Modeling System Functions with
Use Cases

Use Case Diagrams, System Context, Actors

Use Case Diagrams

36

System Context

Who will use the system? Context diagram

o System

o Its boundaries

o External entities

o Incoming / outgoing
• Information (data) flow

• Control flow

 What form?

o Whiteboard drawing

o SysML blokkdiagram
(context diagram)

o BDD or IBD

37

SysML notation: Actors and External systems

Actor

38

External system
(anything as a box)

Sensor

Actuator

Environmental
effect

Information
flow

Use cases

Who will use the system and for what?

39

System
boundary

Use case

Secondary
actor

Primary
actor

Definition of Use Cases

 Use case (használati eset) captures a main functionality
of the system corresponding to a functional requirement

 UCs describe

o the typical interactions

o between the users of a system and

o the system itself,

o by providing a narrative of how a system is used

 A set of scenarios tied together by a common user goal

 Language template: Verb + Noun (Unique)!

o Example: Drive train, Switch turnout

M. Fowler: UML Distilled.
3rd Edition. Addison-Wesley

40

Use Case Descriptions

 Additional textual description to detail use cases
o Preconditions: must hold for the use case to begin

o Postconditions: must hold once the use case has
completed

o Primary flow: the most frequent scenario(s) of the use
case (aka. main success scenario)

o Alternate flow: less frequent (or not successful)

o Exception flow: not in support of the goals of
the primary flow

 Elaborated behavior in SysML (discussed later)
o Activity diagrams: scenarios with complex control logic

o Interaction diagrams: for message based scenarios

41

Definition of Actors
 Actor (aktor, szereplő) is a role that a user plays with

respect to the system.
o Primary actor: invokes the system to deliver a service
o Secondary actor: the system communicates with them while

carrying out the service

 An actor is outside the boundary of the system
 Characteristics:

o One person may act as more than one actor
• Example: The farmer may also act as a laborer who performs the

spraying

o Can be an external subsystem (and not a person)

42

Relations between Actors and Use cases

Association:
• primary actor initiates or
• secondary actor participates in interaction
• (rarely between 2 actors)

43

A use case may be
performed by several actors

An actor may perform
many use cases

Relations between Two Actors

44

Actor Generalization:
• any subactor can perform

use case
• access control (groups)

How to handle complex functionality?

Transport cargo =
•Operate turnouts
•Drive train

45

Refinement with include relation

Base UC

Included
UC

The included UC
breaks down the complex
core functionality into
more elementary steps

46

Generalization of UCs

Use Case
Generalization
(Inheritance)

What happens if
• the selected route of transportation
is blocked?

47

Extend relationship

48

The extension UC
Extends core
functionality by
handling unusual
(exceptional) situation

Base UC

Extension
UC

Overview of UC Relations

Association

• Actor – use case (rarely: actor – actor)

• an actor initiates (or participates in) the use of the system

Generalization

• actor – actor OR use case – use case

• a UC (or actor) is more general than another UC or actor

Includes

• use case – use case

• a complex step is divided into elementary steps

• a functionality is used in multiple UCs

Extend

• use case – use case

• a UC may be extended by another UC

• typically solutions for exceptional situations

49

Traceability of Use Cases in SysML Models

50

Use Cases

Requirements

Block
Diagrams

Activity
Diagrams

<<refine>>

<<satisfy>>

<<refine>>System
Context

<<refine>>

Good practices of UC analysis

Good practice: Grouping

 Grouping UCs
o Identify functional building blocks

o Group them into packages

o NOTE: related by functionality,
NOT by role

 Grouping actors:
o Dedicated (top-level) „Actors” package OR

o Keep actors in a package within
the subsystem they exclusively belong to

52

Good practice: Naming and arrangement

 Actors
o Name actors according to their roles and

avoid using job titles
o Divide complex roles into multiple actors
o Start the diagram by placing the most important actor

in the top left corner

 Use Cases
o Use domain specific verbs for UCs
o Avoid technical descriptions –

UCs are frequently for non-technical reader

 Relationships
o Avoid crossing or curved lines when drawing relations
o Use <<extend>> and <<include>> relations „lightly”
o Place them into the appropriate functional block

Main guideline:
UC diagrams

should be SIMPLE

53

Summary

54

