
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Platform modeling and allocation

Systems Engineering BSc Course

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

Learning Objectives

Platform models

Addressing non-functional requirements in the platform model
Addressing constraints coming from the runtime platform like computation
and communication resources

Allocation

Understanding the concept of allocation
Identify the basic design decisions made during allocation (resource
allocation., scheduling, communication allocation)

Case studies

• See examples of allocation information from different domains

• Analyze extra-functional properties of the integrated allocation model

Why platform models are needed

Runtime platform

▪ Systems provide functions

▪ Functions are defined using

o Functional models

o Component behavior models

▪ How to realize these functions?

5

Runtime platform

▪ Systems provide functions

▪ Functions are defined using

o Functional models

o Component behavior models

▪ How to realize these functions? → in Software!

6

Runtime platform

▪ Systems provide functions

▪ Functions are defined using

o Functional models

o Component behavior models

▪ How to realize these functions? → in Software!

o Maybe in hardware? (e.g., sensors, GPU, FPGA, etc.)

oWhat will execute our software functions?

o How will they be able to communicate

7

Platform model

▪ The platform model specifies the physical building
blocks of the execution platform

o the execution resources

• memory, CPU, etc.

o the available communication resources

• Network interfaces, routers, etc.

o the properties of the used HW elements

• Weight

• Availability

• Size

• etc.

8

Defining the platform model I.

▪ Resource capturing phase

o Specification of reusable hardware entities

• Coming from HW libraries/technical dictionaries

• Defined by HW designers within the project

→atomic hardware units of the execution platform
– Embedded systems: Processor, Communication controller

– Define hardware properties

9

Defining the platform model II.

▪ Platform composition phase

o (Already available HW design → only modifications)

o Definition from bottom-up based on the atomic
building blocks

▪ Similar modeling task as the functional
component definition BUT

o Connecting blocks == physical linkage

o Part-whole relationship == physical containment

o Physical HW properties are needed to be taken into
consideration

• Size, weight, number of ports, etc.

10

Defining the platform model II.

11

Frequently a bottom-up process
using libraries / catalogues

Functions to Platform allocation

Usually HW-SW allocation

Allocation example

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

Functions

System

Display

AirCond

Panel

Supply fresh air

Supply hot air

Monitor
temperature

Set
temperature

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

Only one function per
partition

2

4

Federated
RTOS

Allocation example – functions to partitions

Pack
Controller

Zone
Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functions

System

Display

AirCond

Panel

1

5

3

6

Partitions

ARINC 653
RTOS

Constraints

2

4

Modify HW architecture
for more resources

2

2

Allocation example – communication channels

SW functionality

1

2

6

4

3

5

HW Communication
channels

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

Pack
Controller

Zone
Controller

System

Display

AirCond

Panel

AFDX

ARINC 429

ARINC 653
ports

One possible
candidate is

selected

2

2

Allocation

▪ Input:
o Functional model + platform model

o Additional non-functional constraints

▪ Output:
o System Architecture

▪ The System Architecture defines for each instance
of a Function
o where and when to execute

o when to communicate

o and on which bus

17

Where and when to execute

▪ Platform (HW)

o Available memory

o CPU performance

o Redundancy

▪ Functional (SW)

o Memory required

o Execution window required

o Safety aspects
• E.g., criticality levels

18

▪ Allocate the functions to their designated execution resource

o Processor, GPU, server, node, etc.

▪ Schedule the execution of functions

o Based on their required execution window

• Major driver of the allocation process

▪ Constraints (usually) taken into consideration

When to communicate and on which bus
▪ Allocate Function model level communication means to

platform communication resources
o Information flow to bus mapping
o Data/message mapping to platform representation
o Scheduling

• Messages, buses, routers
• Major driver of the allocation process

o Constraints (usually) taken into consideration

19

▪ Platform (HW)
o Connectivity

• comm. architecture
• Routing
• Supported modes

o Bandwidth & Speed
o Precision

• Data mapping

o Redundancy
• Independent paths

▪ Functional (SW)
o Message properties

• size

• priority

o Communication mode

• 1-1, 1-n, n-n

o Safety aspects

• WCET

Additional aspects of the allocation

▪ Multi-level allocation
o Complexity is handled on multiple abstraction-level →

allocation is handled between all hierarchies

▪ Resulting System Architectures are used for validating
system level functional/non-functional aspects
o Timing requirements, safety requirements, etc.

o Used methods: Static checks, simulations, HiL, etc.

▪ No perfect allocation →Multi-dimension
optimization problem
o Design Space Exploration

20

Extra-functional properties

System properties

▪ Functional requirements →
Functional properties:
functions that the system is able to perform

o including how the system behaves while operating –
also called operational properties.

▪ Extra-functional requirements →
Extra-functional properties:

o no bearing on the functionality of the system

o describing instead attributes, constraints, metrics…

o…regarding performance, design, quality of service,
environmental impact, failure and recovery, etc.

22

Approach

23

Functional model

Additional
information,
configuration

Integrated model;
ready for validation

Validation of
functional
requirements

Validation of
extra-functional
requirements

Example extra-functional properties
▪ Dependability: the ability to deliver service that can

justifiably be trusted.
▪ Attributes of dependability:

o availability: readiness for correct service.
o reliability: continuity of correct service.
o safety: absence of catastrophic consequences on the user(s)

and the environment.
o integrity: absence of improper system alterations.
o maintainability: ability to undergo modifications and repairs

▪ Performability: If the performance of a computing system
is "degradable" performance and reliability issues must be
dealt with simultaneously in the process of evaluating
system effectiveness. For this purpose, a unified measure,
called "performability" is introduced and the foundations of
performability modeling and evaluation are established.

24

Example: dependability analysis taxonomy

25

Modeling

Simulation

Analytical
solution

Static methods

State space based
methods

Reliability block
diagram

Fault tree

Markov chains

Stochastic Petri
nets

…
…

Modeling platform in SysML

Platform modeling techniques

▪ Running platform is composed of existing (hardware)
elements

▪ Approach: bottom-up using composition

☺ Subsystems can be tested one-by-one

☺ There are always some working parts during development

 Exact roles of the subsystems are revealed late

System

Subsystems

Subsytems of subsystems

27

Platform models in SysML

▪ Models composed of blocks → BDD, IBD are used.

28

Role
multiplicity is

set to 1

Modeling allocation in SysML

Allocation example: railway system

▪ Functional structure

▪ Platform structure

30

Allocation example: railway system

▪ Functional structure

▪ Platform structure

31

Allocation example: railway system

▪ Functional structure

▪ Platform structure

32

Allocation example: railway system

▪ Functional structure

▪ Platform structure

33

The allocation relation in SysML

▪ Structural allocation: usage

34

Specifies logical to
physical allocation

Fu
n

ctio
n

s
P

latfo
rm

The allocation relation in SysML

▪ Structural allocation: definition

o Wherever a BBB is used in the system, a zone monitor
and an accident prevention subsystem is assumed to
be allocated to it

35

Fu
n

ctio
n

s
P

latfo
rm

The allocation relation in SysML

▪ Functional allocation: definition

o A zone actuator behaves as it is described in the
allocated statemachine.

36

Functional
model

Platform model

Architecture
model

Component
behav. model

HW/SW
allocation

HW library

Fault tolerance
& safety

SysML allocation matrix

37

Columns: functional elements

Rows: platform elements

SysML allocation matrix

38

Arrow pointing downward:
function to platform allocation

(colum to row)

SysML allocation matrix

39

Multiple platform elements run
the instances of the function

SysML allocation matrix

40

A logical connection is allocated to
multiple elements in the platform

SysML allocation matrix

41

A logical connection is allocated to
multiple elements in the platform

Allocation constraints

▪ Platform element capabilities

o What kind of resources does the platform element
have?

▪ Realization of connections

o Are the connections between the functions supported
by the platform?

▪ Standards and additional well-formedness rules

o Such as „critical and non-critical functions shall not run
on the same platform element”.

42

Advantages of allocation matrices

▪ A function cannot be deployed to the same device
twice.

▪ Allocation of the logical connections can be
validated by examining endpoints and continuity
of the corresponding platform connection.

▪ By examining the safety levels of the allocated
functions row by row, critical and non-critical
functions cannot be allocated to the same device.

43

Best practices / Goals

▪ Avoid single point of failures

▪ Fault tolerant design patterns

o See lecture on
Safety-critical systems: Architecture

▪ Cost efficiency

o Weight

o Price

44

Case Study

AUTOSAR

History
▪ AUTomotive Open System ARchitecture
▪ Started in 2002
▪ BMW, Bosch, Daimler, Conti, VW, + Siemens
▪ Industrial standardization group

o Current standard version: 10-18 (end 2018)

▪ Members: OEMs, Tool vendors, Semiconductor manufacturers
Europe-dominated

▪ Scope
o Modeling and implementation of automotive systems
o Distributed
o Real-time operating system
o String based interaction with HW and environment

▪ Out of scope
o GUI, Java, internet connectivity, File systems, Entertainment systems,

USB connectivity etc.

46

Key Concepts of AutoSAR
▪ A standard runtime architecture

o component-oriented
o layered
o extensible

• New functionalities
• New components (component implementations)

o all major interfaces standardized
o Standardized Run Time Environment (RTE)

▪ A standard modeling and model interchange approach
o follows the principles of model-driven design
o supports the interchange of designs
o supports the collaborative development

• Between different developers,
• Teams,
• And even companies

▪ Conformance test framework
o assuring the conformance to the standard
o Still evolving – new in version 4.0

47

High-level design flow

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level software modeling
• Definition of

• components
• component ports
• port interfaces
• data types – logical

• Result
• Virtual Functional Bus (VFB)-level
software model

High-level design process
Component
Model (VFB)

High-level
SW modeling

Detailed
Component

Design
Component

Internal
Behavior

Detailed component design
• Specification of

• component internal behavior
• functional breakdown
• implementation/use of ports

• Non-AutoSAR
• specification of detailed behavior
• any tool can be used

• UML
• Simulink
• etc.

• Result
• AutoSAR component internal behavior
model
• Non-AR: behavioral models/design

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

Detailed
Component

Design
Component

Internal
Behavior

High-level hardware modeling
• Specification of

• Electronic Control Unit (ECU) resources
• CPU
• memories
• peripherals
• communication hw

• system topology
• ECU instances
• clusters
• connections

• Result
• ECU resource model – for all ECUs
• System topology model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Hardware-software integration
• mapping

• software component allocation
• component implementation selection
• data-element to signal mapping

• inter-ECU communication
• communication configuration

• signal to Protocol Data Unit (PDU) mapping
• PDU to frame mapping
• Signal, PDU, Frame triggering
• Cluster and controller configuration
• Frame scheduling (LIN, FlexRay)

• Result
• System model describing the integrated
HW/SW system

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Component implementation
• Implemeting all components

• automatically
• TargetLink
• Simulink Realtime workbench
• SCADE
• etc.

• manually
• Result

• implementation of the components
• C/C++/…

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

ECU configuration
• Configuring all basic software modules

• based on the system model
• for each ECU separately

• Result
• ECU configuration model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementationBasic Software Services (BSW) configuration

generation
• Configuration generation for basic software

• from the configuration model
• Result

• Configuration files (c,h)
• Generated modules/module fragments

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Compilation and linking
• Building and linking all sources

• application component implementations
• basic software modules
• BSW configuration files

• Result
• Deployable binary file

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Models in the design flow

▪ Software Component Template

o Components, ports, interfaces

o Internal behavior

o Implementation (files, resource consumption, run time,
etc.)

▪ ECU Resource Template

o Hardware components, interconnections

▪ System Template

o System topology, HW/SW mapping

o Comm. matrix

Models in the design flow 2

▪ Basic Software Module Template

o BSW modules
• Services

• Schedulable entities

• Resource consumption

▪ ECU Configuration Parameter Definition Template

o Configurable parameters of BSW modules

▪ ECU Configuration Description Template

o Actual configurations of BSW modules

o Based on the ECU Parameter Definition

AUTOSAR vs. UML/SysML/... modeling

▪ AUTOSAR defines models with

o Domain Specific Constructs

o Precise syntax

o Synthesizable constructs
• Direct model -> transformations

• Direct model -> detailed model mappings

o Different abstraction levels
• From Virtual Function Bus to configuration

▪ Result

o Models are primary design and implementation artifacts
• More precise, consistent modeling should be done

Case study

Analysis of extra-functional properties of a service

Validation of service configurations

▪ Performability analysis

o „Performability = Performance + Reliability”

▪ What happens in case of a failure?

o E.g. the middleware responsible for reliable messaging
resends the lost message → the guaranteed response
time may increase (e.g. too low timeout → several
false resends).

▪ What is the price of reliability? (performance-
reliability tradeoff)

▪ How to set SLA parameters?

62

What do we model from all of this?

▪ Abstract behavior

o Server

o Client

▪ Message handling parameters (derived)

o Method for handling messages

o Number of resends

o Parameters of send, resend, ack

• (exponential distribution)

63

▪ Describes the platform

▪ Its parameters are included in the configuration
model

Server

ServerIdle

Processing

?send

?resend

!ack

Client

ClientIdle

Sent1x

Fail1x

Sent2x Sent3x

Fail2x Failure

Success

!send !resend !resend

timeout timeout timeout

reset

?ack ?ack ?ack

!ack

Middleware model

send

resend

ack

64

Analysis results: utilization

Analysis in steady-state

How much time does error handling take?

Success

Failure

MsgSent1

MsgSent2

MsgSent1

Fail1

ClientIdle

Fail2

~23%

65

Sensitivity analysis results

Sensitivity analysis: what to change?

Probability of system level failures with respect to timing
parameters of „resend”?

An increase in the number of successful ACK
messages significantly lowers the number of failures

66

Case study

Schedule execution on a distributed platform

Scheduling

▪ Platform model: computation nodes and
communication channels between them.

▪ Algorithm model: data-flow graph with
operations as vertices and data-dependencies as
edges.

▪ Challenge: schedule operations on the
computation nodes for execution

o Network communication takes time

o Local results can be accessed instantly

68

PlatformDataflow/ALG

Example [A. Girault]

I OA

B

C

D

E

F

G

P1 P2

P3

L13

L12

L23

WCET I A B C D E F G O

P1 10 20 30 20 30 10 20 14 14

P2 13 15 10 30 17 12 25 10 X

P3 X 10 15 10 30 20 10 15 18

Src/Trg P1 P2 P3

P1 0 15 10

P2 15 0 20

P3 10 20 0

1) Create schedule (when and where to run what?)
2) Create fault-tolerant (FT) schedule if at most 1 proc may fail

Naive solution (no FT)
P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10

A 10 30 30 45

B 30 60

C 60 80

D 45 62

E 74 89 62 74

F 80 100

G 100 114

O 114 128

P1 P2

P3L13

L12

L23

I A B C F G O D E

A D

EG

P1

I A C

FT Allocation and Schedule
P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10

A 10 30 30 45

B 30 60

C 60 80

D 45 62

E 74 89 62 74

F 80 100

G 100 114

O 114 128

P1 L12 P2 L23 P3 L13

Start End Start End Start End Start End Start End Start End

I 0 10 0 13

A 10 30 13 28 30 40

B 38 53 28 38 40 55

C 30 50 55 65

D 50 80 38 55 55 75

E 67 82 55 67 65 85

F 80 100 85 95

G 100 114 95 110

O 114 128 110 128

P2

P3
L13

L12

L23

EG BFD F G O

B C E F G O

D
G

A
B

A C E F G

C

Summary

