
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Verification & Validation: Overview,
Requirement-based testing

Systems Engineering BSc Course



Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional 
model

Platform 
model

Architecture 
model

Config. model
Component 

behav. model

Source code Config. file

Binary code

Compiler 
Linker

HW/SW 
allocation

code generationcode generation

HW library

Requirements

Fault tolerance 
& safety

2



Learning Objectives

V&V overview

• List typical V&V activities

• Classify verification techniques according to their 
place in the lifecycle

Requirement-based testing

• Recall basic testing concepts

• Describe the goal of specification-based test 
design techniques

• Use basic test design techniques 

3



Overview of V&V techniques



Typical steps in development lifecycle

5

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Schedule, sequencing 
depends on lifecycle model!

System 
engineer 

Architect 

Developer,
coder

Test 
engineer



6

Task V&V criteria V&V technique

Defining functions, 
actors, use cases

- Risks

- Criticality

- Checklists

- Failure mode and 
effects analysis

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Requirement analysis



System specification

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Task V&V criteria V&V technique

Defining functional 
and non-functional 
requirements

- Completeness

- Unambiguity

- Verifiability

- Feasibility

- Reviews

- Static analysis 

- Simulation

7



Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Architecture design

Task V&V criteria V&V technique

- Decomposing 
modules

- HW-SW co-design

- Designing 
communication

- Function coverage

- Conformance of 
interfaces

- Non-functional 
properties

- Static analysis 

- Simulation

- Performance, 
dependability, 
security analysis

8



9

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Module design (detailed design)

Task V&V criteria V&V technique

- Designing detailed 
behavior 
(data structures, 
algorithms)

- Correctness of 
critical internal 
algorithms and 
protocols

- Static analysis 

- Simulation

- Formal verification

- Rapid prototyping



10

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Module implementation

Task V&V criteria V&V technique

- Software 
implementation

Code is 

- Safe

- Verifiable

- Maintainable

- Coding conventions

- Code reviews

- Static code analysis

- Verifying module 
implementation

- Conformance to 
module designs

- Unit testing

- Regression testing



11

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

System integration

Task V&V criteria V&V technique

- Integrating modules

- Integrating SW 
with HW

- Conformance of 
integrated 
behavior

- Verifying 
communication

- Integration testing 
(incremental)



12

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

System delivery and deployment

Task V&V criteria V&V technique

- Assembling 
complete system

- Conformance to 
system specification

- System testing

- Measurements, 
monitoring

- Fulfilling user 
expectations

- Conformance to 
requirements and 
expectations

- Validation testing

- Acceptance testing

- Alfa/beta testing

Source: Video and radar test (Bosch) Source: Consumer Reports

http://www.meetup.com/teszt-tea/
http://www.consumerreports.org/cars/how-consumer-reports-tests-cars/


13

Tasks during operation and maintenance:
- Failure logging and analysis (for failure prediction)
- V&V of modifications

Mini-lifecycle 
for each 

modification

Requirement 
analysis

System 
specification

Architecture 
design

Module 
design

Module 
implementation

System 
integration

System 
delivery

Operation, 
maintenance

Operation and maintenance



V&V in the V-model

14

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. 
design

Not just after 
coding

V&V in each 
step!



Basic V&V Concepts

Recap from Software Engineering course

15



16

V&V techniques

• What: any artefact
(documentation, model, code)

• How: without execution

• E.g.: review, static analysis

Static

• What: executable artefacts 
(model, code…)

• How: with execution

• E.g.: simulation, testing

Dynamic



Basic concepts

▪ SUT: system under test

▪ Test case
o a set of test inputs, execution conditions, and 

expected results developed for a particular objective

▪ Test suite

▪ Test oracle
o A principle or mechanism that helps you decide 

whether the program passed the test

▪ Verdict: result (pass / fail /error / inconclusive…)

Specification, 
requirements

Test cases Verdicts
Test

execution

17



18

Problems and tasks

▪ Test selection

o What test inputs and test data to use?

▪ Oracle problem

o How to get/create reliable oracle?

▪ Exit criteria

o How long to test? 

▪ Testability

o Observability + controllability



19

Case study: AUTOSAR 
Acceptance Tests

Source: AUTOSAR ATS Overview, AUTOSAR ATS RTE

19

https://www.autosar.org/specifications/acceptance-tests-11/
https://www.autosar.org/specifications/acceptance-tests-11/specifications/


AUTOSAR concepts (recap)

20



AUTOSAR Acceptance Tests

▪ System-level tests based on specification

▪ Checks visible functionalities

o Application level and Bus level

▪ Acceptance Test Specifications (ATS)

▪ Test suites for different specifications

o Communication (CAN, FlexRay…), Memory stack, 
Runtime Environment [RTE]…

21



Example: AUTOSAR ATS RTE 

▪ Tests RTE functionality

▪ 5 features, 68 test cases, 251 pages (!)

Feature: RTE Client Server Communication

▪ General Test Objectives:
cover the Client Server 
feature of the RTE 
[RS_BRF_01312]

22



Requirements and specification to test

[RS_BRF_01312] AUTOSAR RTE shall support calling of 
subroutines (client/server call, including remote 
procedure calls).

[SRS_Rte_00029] The RTE shall support multiple-client-
single-server ("n:1") client-server (function invocation) 
communication.

[SWS_Rte_04516] The RTE’s implementation of the 
client-server communication shall ensure that a service 
result is dispatched to the correct client if more than one 
client uses a service.

23

Refine

Refine

How can we test this functionality?



What is needed to define a test

▪ Test architecture

o SUT, simulated components, test drivers and stubs…

▪ Test configuration and data

o Parameters, message data…

▪ Test cases

o Test goal, pre-conditions, sequence of steps (input + 
expected output), post-conditions…

24



Test architecture

25

System Under TestSoftware Components 
for testing

Point of Control and 
Observation

Starting and 
controlling tests



Test configuration (excerpt) 

26



Test case

27



Test case (cont’d)

28



Test case (cont’d)

29



Specification-based test design



Test design techniques

31

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified 

functionality

• SUT: white box
• Inner structure known
• Testing based on 

internal behavior



Specification-based techniques

32

Equivalence 
classes

Boundary 
values

Decision 
tables

Combinatorial 
testing

…

Based on 
use cases



Equivalence class partitioning

▪ Input and output equivalence classes:

o Data that are expected to cover the same faults
(cover the same part of the program)

o Goal: Each equivalence class is represented by 
one test input (selected test data)

▪ Highly context-dependent

o Needs to know the domain and the SUT!

o Depends on the skills and experience of the tester

33



Selecting equivalence classes

▪ Selection uses heuristics

o Initial: valid and invalid partitions

o Next: refine partitions

▪ Typical heuristics:

o Interval (e.g. 1-1000)

• < min, min-max, >max

o Set (e.g. RED, GREEN, BLUE)

• Valid elements, invalid element

o Specific format (e.g. first character is @)

• Condition true, condition false

o Custom (e.g. February from the months)
34



Deriving test cases from equiv. classes

▪ Combining equiv. classes of several inputs

▪ For valid (normal) equivalence classes: 

o test data should cover as much equivalence classes as possible

▪ For invalid equivalence classes:

o first covering the each invalid equivalence class separately

o then combining them systematically

35



EXERCISE

Requirement: The loan application shall be denied if 
the requested amount is larger than 1M Ft and the 
customer is a student, unless the amount is less 
than 3M Ft and the customer has repaid a previous 
loan (of any kind).

▪ Input parameters? Equivalence classes?

▪ Any questions regarding the requirement?

Equivalence partitions

37



Specification-based techniques

38

Equivalence 
classes

Boundary 
values

Decision 
tables

Combinatorial 
testing

…

Based on 
use cases



2. Boundary value analysis

▪ Examining the boundaries of data partitions

o Focusing on the boundaries of equivalence classes

o Both input and output partitions

▪ Typical faults to be detected: 

o Faulty relational operators, 

o conditions in cycles, 

o size of data structures, 

o …

39



Typical test data for boundaries

▪ A boundary requires 3 tests:

▪ An interval requires 5-7 tests:

boundary 1 boundary 2

boundary

40



EXERCISE

Requirement: If the robot detects that a human is 
closer than 4 meter, then it has to slow down, and if 
it is closer than 2 meter, then it has to stop.

▪ What values to use for testing?

▪ Any other questions regarding the requirement?

Boundary values

42



Specification-based techniques

43

Equivalence 
classes

Boundary 
values

Decision 
tables

Combinatorial 
testing

…

Based on 
use cases



Deriving tests from use cases

▪ Typical test cases:

o 1 test for main path („happy path”, „mainstream”)

• Oracle: checking post-conditions

o Separate tests for each alternate path

o Tests for violating pre-conditions

▪ Mainly higher levels (system, acceptance…)

44



EXERCISE Deriving tests from a use case

45



Summary

46


