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Motivation

How to ensure the designed
controller (software) works
correctly?




Controller, Plant, and Environment

= Typical system control loop IEnwronment Disturbance

|
Reference signals I
and settings Controller =  Plant
Output

= Challenge: validate the design of the controller

o On-site testing and calibration can be
* Expensive (time + cost)
* Dangerous

o Instead: run simulation
* Must model physical properties of plant & environment




Physical systems

= Models up to this point:
o ,,Controllable” system, model
o System under design
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o Modeling goal: facilitate design process, (formal)

analysis and verification of internal behaviour

= Physical systems:
o Laws of physics can not be changed
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o Existing system

o Modeling goal: assure designed system interacts well
with environment




Discrete vs continuous models

Discrete Continuous

Reactive, state-based models Differential equation systems

Changes described by assignments Behaviour described by mathematical equations

Simulation - logical clocks Simulation — numerically solving equation systems
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= Reality: Practically all real systems are hybrid

o Reactive components mixed with continuous changes




Platform-based systems design

e Requirements .
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Platform-based systems design




Learning Objectives

Modeling physical parameters and constraints

e Describe continuous behaviour of physical systems

e Include rules constraining physical properties

e Capture properties and constraints using the SysML language
e Use the Modelica language to describe physical systems

Simulation of discrete and continuous models

e Work with systems of discrete and continuous states
e Capture both continuous-time and discrete time properties
e Perform discrete event and continuous time simulation

e Understand challenges of simulation in industrial settings




Outline

Modeling physical systems

Simulation basics

Simulation of discrete and continuous systems

Motivating examples and case studies




Modeling physical systems

Modeling > AR Modelica
basics elements




Physical models

Software models Physical models

Usually discrete Usually continuous

Dissected — system is built by integration of In many cases everything has an impact on
components everything (e.g. weather — temperature)
Understandable, maintainable, usable ,God doesn’t build in straight lines”

Any engineer can create the model Good model requires domain expertise

The Value of Models

* In sciqnce, the value of a model/ lies in how well its
behavior matches that of the physical system.

.

In engineering, the value of the physical system lies in
how well its behavior matches that of the model.

Edward A. Lee: Modeling in Engineering and Science
https://dl.acm.org/citation.cfm?doid=3301004.3231590



https://dl.acm.org/citation.cfm?doid=3301004.3231590

Example: modeling a simple pendulum

= Simple pendulum

Angular
velocity

Angular 'ﬁ((?)) — ( ga).(t) )
acceleration —Zsme(t)




Assignments and equations

= Causal connection = assignment in programming
language
y = xX + 3
o Right-hand-side value determines left-hands-side variable
o Typical use: to implement controller
= Acausal connection ® mathematical equation
y =X+ 3 <&y -3 -x=0

o Always holds; if any of the variables has a new value, it
enforces that the other variables change accordingly

o Typical use: to model behaviour of plant / environment




= Model can be simulated 2 Modeling tools

o Neither over- nor underdetermined equation system
(theoretical requirement)

o Modeling tools have additional constraints
= Representative model

o Obeys physical laws = formulate in model
o Accurate representation of real-world systems
— compare simulation with real measurements

= General usability

o Maintainable, reusable, etc. 2 block-based modeling




How to create a model

1. Decompose the system

2. Customize existing components
o Better to use components provided by tools
— (Just like programming languages)
o Assign parameter bindings

3. Adjust connections

4. Check model accuracy

= Accurate modeling is difficult
o Models are created by domain experts
o There are complete books on modeling
= Simulation can be used for verification
o (non-exhaustive, just like testing)




Checking physical model accuracy

Real system Modeling

AN

Analyze
,Debug”

Experiment/ Refine Virtual

measurement experiment

Measurement Simulation
results




Modeling physical systems

Modeling el Modelica
basics elements




Constraint blocks

= Constraint: equations with parameters bound to
the properties of the system

= Constraint block: supports the definition and the
reuse of constraints. It holds

o a set of parameters and
O an equation constraining the paramete

N £ th = Equation — no
ame O e «constraint»
: Nowton's | dependency
constraint wton's law
between

constraints
{{java}force == mass * acceleration} variables

May have paraneters

force : N
language mass : kg Pa.rameters
specification acceleration : m/s/s with types




= Composition is used to define complex constraints

Constraint definition

from simple equations

Hierarchy
depicted in
a BDD

bdd [Package] Systems engineering [ Power analysis L|

«xconstraint»
Power consumption

parameiers

componeﬁt demands : W [0..7]

current : A
voltage : V
joules law | pOWer sum
j°°':esfra::t” «constraints
FIERL Power sum
_"'-""E“p"': constraints
fower = current © vokage} {total power = sum (component demands)}
parameters T
Sg,’t;e"; C component demands : W [0..%]
g 5 total power : W
power : W




Parametric Diagram (PAR)
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Parameter bindings

" Goal: describe the application of constraints in a
particular context

par [Constraint Block] Power consumption [ Power consumption JJ

component demands : W [0..%]

} «constraint»
power sum : Power sum
{total power = sum (component demands)}

5
Values bound total power : W

together are equal o

=1 «xegqual»
-

component demands : W [0..%]

power . W

___current : A «eqguals current : A [_]

:] «constraint»
| voltage : V xequaly voltage : V joules law : Joules law
= & {power = current * voltage}

Types in a binding

must be compatible

e s
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Applications of parametrics

= Parametric specification
o Define parametric relationships in the system structure

= Parametric analysis

o Evaluating constraints on the system parameters to
calculate values and margins for a given context

o Checking design alternatives
o Tool support: ParaMagic plug-in for MagicDraw

= Exact values may come from other sources

o There are modeling standards with better support for
this modeling aspect...

o ...such as Modelica




Modeling physical systems

Modeling SR Modelica
basics elements




Modeling Tools

= IModelica /7;:

MODELICA
o OMEdit OpenModelica

o Dymola

= Matlab/Simulink
4\ MATLAB

| SIMULINK
= Domain specific tools

o Ansys Simplorer (electrical systems)

o AUTOSAR - Course: BMEVIMIAV15 AuTesSAR
o CANoe (Engine control unit) VECTOR >




Overview of Modelica

= Modelica is an object-oriented, equation-based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

* The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

" |mplementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

* Modeling and simulation IDE: OpenModelica - OMEdit




Example: Modelica code for simple pendulum

Model name Continuous time
model SimylePendulum variables, constants

parameter Real L=2.0;
constant Real g=9.81;
Real theta (each start = 1.0);

Real omega;
equation Initial value

der (theta) = omega;
der (omega) = -(g/L) *theta;

(Differential) equations




Modelica Standard Library

* Provides reusable building blocks (called classes) for
Modelica models
= Version 3.2.1. has more than 1340 classes and models

= \/arious domains
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Modelica Standard Library

= P| Definition in Modelica textual syntax:
equation

auxiliary[1l] =
for i in 1l:n -

x[1];
1 loop

auxiliary[i + 1] = D.Tables.AndTablelauxiliary[i], x[1 + 1]1;

end for;

y = pre(auxiliary([n]);

inertia2
1
—
[T
J=02

0 =]

a

> 2
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a=q
Anicd2 L
o1

planetary
L

—
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Definition in Modelica textual syntax:
equation
phi = flange a.phi;
phi = flange b.phi;
w = der (phi);
a = der(w);
J*¥a = flange a.tau + flange b.tau;




Example plant model — train brakes

= Physical model for braking system carrying a mass
brake

E U
massi
m=1
—

startTime=0.1
" Graphical notation in OpenModelicaEditor (~ibd)




Simulation Discrete Timed Continuous Practical
basics systems systems systems aspects




Model-based verification

= Modeling
o Builds an abstract mathematical representation

= Simulation
o Executes (some parts of) the behaviour model

o Virtual experiment

= Testing
o Executes (some parts of) the real system

= Other types of verification

o Formal verification

o Monitoring (can be used on simulated models)




Advantages over real experiments

= Real system does not change

o Error in simulation does not cause
real problem

o Model can simply be reset
= Simulation is much faster

o Hours can be simulated in seconds

o (Real-time simulation is also
possible)

= Parameters can be adjusted easily

= Easier to analyze
o Can be controlled, replayed T

o No need for complex monitoring -




Types of behavior models

Discrete time Continuous time
T Simple state ~
. BN machine N _
Discrete T e | T
system  rreeeesssseeeeeee — I
state o= — 1.
— —t—
whe=
- o’ :
-+ 1 Physical
Cont. L system model
system L [
state | —
— —+




Types of behavior models

Discrete time Continuous time

Simulation
IS a
challenge

Simulation

IS easy




Types of simulation

= DES: Discrete event simulation
o Event-based model (e.g. timed state machine)

o Simulation step by step
* Considering events (timestamps), guards and actions
* Event queue — order is important

o Challenges: synchronization

= Time stepped dynamic model

o Continuous model
(performance model, physical model)

o Problem: discrete time simulator

— Discretization of time




Simulation Discrete Timed Continuous Practical
basics systems systems systems aspects




Goals of System Simulation

" Check the design of the system
o Material flows — are there bottlenecks?

o Queue locations and sizes — do they get blocked or
starved?

o Resources — are they sufficient, do they starve
important operations?

o Failure modes — what are they and what causes them?
= Check if it has the required capacity

= See what different types of downtime do to
performance

" Improve the design




Components of a D. E. Simulation

= Simulations contain

o Events causing changes in the system state

* Event space — set of possible events: input events, timed
events, etc.

o Queues where entities wait their turn
* Significant in case of asynchronous communication

* Synchronous systems — logical clock model

= Only one event at once

o Two events can have the same time stamp but they
have to have an order (see: state charts with exit, entry
and do actions)




Example: Traffic Light

= Events: On, Off, Start, Stop, Switch, Error

@ — 5 o |

On Off

| Blinking yellow }

. Stop
| Error

®—

Main Cycle

Switch

Yellow

Switch

Sweitch

| RedYellow

Switch

= Simulator: a program that can tell what state the
system is in — given an input event sequence

= Possible, even manually
= MagicDraw: CAMEO toolkit




Simulation Discrete Timed Continuous Practical
basics systems systems systems aspects




Variables and time

= Sytem state:
o Represented by variables (explicit or implicit)
o Continuous/discrete

= Representation of time
o Continuous/discrete (logical clock - tick)

= Simulation uses virtual time

o Virtual time # runtime

o (Except for real time simulation) If the only continuous
component is time,

= Time is a variable! . . L
discrete simulation is

o Although a special one still possible.




Example: Timed Traffic Light

= Events: On, Off, Start, Stop, Switeh, Error

e o wneme ] Timed event
On Off H Yellow I after (2 s)

| Blir ki"g HE”DW t
amer s} arer 2]
‘T—MiErr r ( ) ( Jl

} RedYellow

4

Red |

= Simulator: a program that can tell what state the
system is in — given an input event sequence incl time
delays

= Possible, even manually
= MagicDraw: CAMEO toolkit




Simulation Discrete Timed Continuous Practical
basics systems systems AES aspects




Goals of system simulation

= Ensure model correctness

= Ensure correct interactions
with desighed system
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= Analyse/predict system
behaviour
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Simulation of continuous systems

= Simulating a model means to calculate the values
of its variables at certain time instants

= Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

o ODE specific solvers exist for this purpose




Example: Pendulum simulation results
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Challenge

= Good model can be simulated incorrectly

Bouncing Ball Simulation Problem
Apr-24-17 06:40:35

aggajjar

Dear all,
| am not able to understand how to use when loop for bouncing ball problem. The standard code given in Michael Tiller's book is as follows:

model BouncingBall "The 'classic’ bouncing ball model" ( ) d d l
type Height=Real{unit="m"}); OO l ’ ’ 0 e O
type Velocity=Real{unit="m/s"});
parameter Real e=0.8 "Coefficient of restitution"; °
parameter Height h0=1.0 "Initial height"; b g b /l
a bouncing ba
Velocity v;

& Thank you initial equation
h=ho;

e Condition of

der(v) = -9.81;

e ———  houncing: h<0

end BouncingBall;

is code works extremely fine but let's say when | make h==0 (instead of h=0 i.e. ball hits the ground) in when statement then | get weird
output in simulation and | am not able to understand it. So, any help would be appreciated.

Problem when
changed to h==

Thank you.




Incorrect simulation example

= Bouncing ball Ball falls
underground?

—— h [m]

10 3
1 N

: Because of the numerical errors, at
-20 some point h==0 will be missed

-25 3

-15 3

-30 -




Continuous simulation challenges

»1he problem with simulation is that no matter what results you
need, you are probably going to be able to get them.”
[ApPLIED 2019]

= People tend to forget the limitations of simulation

o Model limitations
* Complex physics
* Modeling connections is hard
* Some environmental impacts will always be neglected
o Limitations caused by time-stepped simulation
 Communication delays
* Induced reactions
o Differential equation solver limitations

o Propagation of numerical errors

= Correct configuration requires both domain and simulation
knowledge




Simulation Discrete Timed Continuous Practical
basics systems systems systems aspects




Physical systems: TLM simulation

" Transmission Line Modeling

o Every physical transmission/propagation (energy, force, etc.) in
the model has a velocity

— Delay exists in the real system!
o Model delay
o Delay can be used to brake cyclic dependencies

"= Most simulation limitations exist to avoid loops
o Cyclic dependencies between variables
o There will be a delay

* Easy solution: always calculate with previous values

* Better solutions: at least one delay per cycle




Hybrid simulation

= Most industrial models are hybrid
o Contains both discrete and continuous components
o Discrete changes effect the dynamic behaviour

MSPC of a Granulation Process

10

First Score

(=]
0 20 40 60 80 100




Co-simulation

= Models of system components may differ

o Model domain characteristics
* E.g. discrete/continuous
* Desired simulation techniques

o Modeling environment and capabilities
o Creator (protection of intellectual property)

Co-simulation: The parallel simulation of different models in a
controlled environment, allowing them to communicate,
synchronize, etc. without raising IP protection concerns

= Solution: FMI standard fmi




Ensemble simulation

= Problem: uncertainty in initial physical conditions
—>No exact initial state
= Solution: Ensemble simulation

o Repeat simulation multiple times from different states

o Approximate probabilities of outcomes

= Example: weather
o Hurricane Rita, 2005 September 07

o ~ a month after Katarina destroyed
New Orleans

- Most probably heading for Houston




Probabilistic simulation

= Similar to ensemble simulation
o Run multiple simulations to tackle uncertainty
o Approximate probabilities based on results

= Difference:

o Uncertanity not in initial state

o Random-generator used runtime

— Often used for the sole purpose of probability
approximation

o Unlike in case of the weather: the most probable outcome is the
main interest not the exact probabilities

o Mathematical computation is often difficult




Motivating case studies

Case studies from the OpenCPS Project




OpenCPS project

= Open Cyber-Physical System Model-Driven
Certified Development

= 4 countries ‘ﬁl I=

= 18 industrial partners, including
s [€ZZ] ericsson Z SIEMENS

il IncQueryLc

* |ndustrial demonstrators in various fields

o Building, Aeronautics, Mechanics, Naval, Power plant,
Gaz turbines, Automotive




Thermal model of an aircraft
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Boundary Conditions

Flight mission (Mach, altitude, ...)
Pressure, Temp., Humidity with altitude
Sun radiation, Sun position,

Pressure, Temperature, Humidity
change over horizontal distance

Non standard atmospheres model?

. Time varying heat loads from e.g.
Sensors

Thermal model of an aircraft

Geometry Data

—

. A
\//

Functional Mock-up
Unit (FMU)

»  Physical connection

"""""" +*  Information signal

FMI master simulation environment

Multidomain, hybrid
co-simulation required




= Saab’s aircraft model
o Huge complexity

o Continuous components required very
small simulation step size = highly
inefficient simulation

o Solution: better tools, distributed
algorithm

= SKF’'s bearing model
o Required very precise simulation
o Solution: TLM simulation
= Sherpa’s hybrid electric vehicle model
o Required fast and accurate simulation
o (My) solution: New simulation algorithm




b]=\Y/[0R Real world simulation case study

= Nagy Simon és Vajda Maté munkaja
" Forgalom-elemzd rendszer szimulacioja

o Rendszer: Autdok rendszamtablajanak leolvasasa +
adatok rogzitése/feldolgozasa felh6ben

o Szimulaciods cél: Késleltetések elemzése az informatikai
infrastrukturaban




Summary

Discrete Continuous

= Model can be simulated = Modeling tools
Reactive, state-based models Differential equation systems
Changes described by assignments  Behaviour described by mathematical equations o Neither over- nor underdetermined equatlon system
Simulation - logical clocks Simulation — numerically solving equation systems (theoretica| req uirement)

o Modeling tools have additional constraints

\\// = Representative model
o Obeys physical laws = formulate in model

o Accurate representation of real world systems

[ED

= Reality: Practically all real systems are hybrid = compare simulation with real measurements

o Reactive components mixed with continuous changes * General usability

o Maintainable, reusable, etc. = block-based modeling

Goals of system simulation Simulation of continuous systems

= Ensure model correctness ® Ensure correct interactions
with designed system

= Simulating a model means to calculate the values
of its variables at certain time instants

= Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

= Analyse/predict system

behaviour = Perform tests

o Numerical techniques

o ODE specific solvers exist for this purpose




