
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Safety-critical systems:
Architecture

Systems Engineering course

(slides: István Majzik)

Overview of the goals

Previous topics

▪ What did we specify?

o Safety function requirements: Function which is
intended to achieve or maintain a safe state

o Safety integrity requirements: Probability of a safety-
related system satisfactorily performing the required
safety functions (i.e., without failure)

▪ Safety Integrity Level and component fault rates

o SIL 4: 10-8 ...10-9 faults per hour

o Typical electronic components: 10-5…10-6 faults/hour

o Typical software: 1..10 faults per 1000 line of code

???

Goals

▪ Safety critical systems study block

1. Requirements in critical systems: Safety,
dependability

2. Architecture design (patterns) in critical systems

3. Evaluation of system architecture

▪ Focus: Design of system architecture to ...

omaintain safety

o handle the effects of faults in hardware and software
components

Learning objectives

Architecture design in safety critical systems

▪ Understand the role of architecture

▪ Know the typical architecture level solutions for
error detection in case of fail-stop behavior

▪ Propose solutions for fault tolerance in case of

o Permanent hardware faults

o Transient hardware faults

o Software faults

▪ Understand the time and resource overhead of
the different architecture patterns

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required
• E.g.: X-ray machine

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required
• E.g.: airplane

Safe operation
even in case of faults

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required
• E.g.: X-ray machine

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required
• E.g.: airplane

Safe operation
even in case of faults

Typical architectures
for fail-stop operation

1. Single channel architecture with built-in self-test

▪ Single processing flow with error detection

▪ Scheduled hardware self-tests

o After switch-on: Detailed self-test

o In run-time: On-line tests

▪ Online software self-checking

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

▪ Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

Function execution

Error detection

Implementation of on-line error detection

▪ Application dependent (ad-hoc) techniques
o Acceptance checking (e.g.: too low, too high value)

o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)

o Structure checking (e.g.: broken structure)

▪ Application independent (platform) mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o OS level checking
• Invalid parameters of system calls

• OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

States in case of stuck-at 0/1
faults:

States in case of transition
fault:

States of two correct (adjacent) cells
to be checked:

Testing: „March” algorithms (w/r)

Example: Checking execution flow (sw)

▪ Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=m-i;

}

e: printf(“%d\n”,n);

}

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

What if the
compiler or

CPU is faulty?

Example: Checking execution flow (sw)

▪ Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

} else {

d: S(d); m=m-i;

}

e: S(e); printf(“%d\n”,n);

}

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph:

b

c

d

e

a

f

2. Two-channels architecture with comparison

▪ Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

▪ High error detection
coverage
o The comparator is a critical

component (but simple)

▪ Disadvantages:
o Common mode faults

o Long detection latency
=

stopn

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety checking

▪ Independent second
channel
o Safety bag/Monitor/Shield:

only safety checking
o Diverse implementation
o Checking the output of the

primary channel
• E.g. command is not dan-

gerous at the time of issue

▪ Advantages
o Explicit safety rules
o Independence of the

checker channel

stop

Example: Elektra interlocking system

Two channels:

▪ Logic channel:
CHILL (CCITT High
Level Language)
procedure-
oriented
programming
language

▪ Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
language

Computes
instructions

to issue

Evaluates if
instructions

are safe

Typical architectures
for fault-tolerant systems

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required
• E.g.: X-ray machine

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required
• E.g.: airplane

Safe operation
even in case of faults

Fault tolerant systems

▪ Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault→ error → failure chain

• Detecting the error and assessing the damage

• Involving extra resources to perform corrections / recovery

• Providing correct service without failure

• (Providing degraded service in case of insufficient resources)

▪ Extra resources: Redundancy

o Hardware

o Software

o Information

o Time

resources (sometimes together)

Categories of redundancy

▪ Subjects of redundancy:
o Hardware redundancy

• Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
• Extra software modules (e.g. multiple, diverse implementations)

o Information redundancy
• Extra information (e.g., error correcting codes)

o Time redundancy
• Repeated execution (to handle transient faults)

▪ Availability of redundant resources
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load

o Hot: The redundant component is active in fault-free case

Overview: How to use redundancy?

▪ Hardware design faults: (< 1%)

o Hardware redundancy with design diversity

▪ Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g.: redundant processor)

▪ Hardware transient operational faults: (~70-80%)

o Time redundancy (e.g.: instruction retry)

o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

▪ Software design faults: (~ 10%)

o Software redundancy with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

▪ Duplication with diagnostics:

o Error detection by comparison

o With diagnostic unit:
Fault tolerance by switch-over

▪ TMR: Triple Modular Redundancy

o Masking the failure
by majority voting

o Voter is a critical component
(but simple)

▪ NMR: N-modular redundancy

o Masking the failure by majority voting

o Mission critical systems: Surviving the mission time

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

OutputMajority

With diversity in case of considering design faults

2. Fault tolerance for transient hardware faults

▪ Approach: Fault tolerance implemented by
software

oDetecting the error

o Setting a fault-free state by handling the fault
effects

oContinuing the execution from that state
(assuming that transient faults will not occur again)

▪ Four phases of operation:

Error detection
Damage

assessment
Recovery

Fault treatment
and continuing

service

Phase 1: Error detection

▪ Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

▪ Application dependent techniques:
o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …

Error detection
Damage

assessment
Recovery

Fault treatment
and continuing

service

Phase 2: Damage assessment

▪ Motivation: Errors can propagate among the components
between the occurrence and detection of errors

▪ Limiting error propagation: Checking interactions
o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

▪ Estimation of components affected by a detected error
o Logging resource accesses and communication

o Analysis of interactions (before error detection)

!Fault Error detection
Interactions

Error detection
Damage

assessment
Recovery

Fault treatment
and continuing

service

Phase 3: Recovery

▪ Forward recovery:
o Setting an error-free state by selective correction
o Dependent on the detected error and estimated damage
o Used in case of anticipated faults

▪ Backward recovery:
o Restoring a prior error-free state (that was saved earlier)
o Independent of the detected error and estimated damage
o State shall be saved and restored for each component

▪ Compensation:
o The error can be handled by using redundant information

Error detection
Damage

assessment
Recovery

Fault treatment
and continuing

service

Types of recovery

▪ State space of the system: Error detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

Types of recovery

▪ State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

f1

f2

f3

Types of recovery

▪ State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

Types of recovery

▪ State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

Types of recovery

▪ State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

f1

f2

f3

Compensation

Backward recovery

▪ Backward recovery based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Save: copying the state periodically into stable storage

• Recovery: restoring the state from the stable storage

• Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

▪ Limited applicability: Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of
operations

o Analogy: ”undo”

Scenarios of backward recovery

t

!
t

!
t

!
t

Saved state 1 Saved state 2

Fault Detection

Phase 4: Fault treatment and continuing service

▪ For transient faults:
o Handled by the forward or backward recovery

▪ For permanent faults:
o Recovery is unsuccessful (the error is detected again)
o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault
o Reconfiguration

• Replacing the faulty component using redundancy
• Degraded operation: Continuing only the critical services

o Repair and substitution

Error detection
Damage

assessment
Recovery

Fault treatment
and continuing

service

4. Fault tolerance for software faults

▪ Repeated execution is not effective for design faults!

▪ Redundancy with design diversity is required

Variants: Redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common faults

▪ Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

▪ Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

o Majority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a critical component (but simple)

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

Recovery blocks
▪ Passive redundancy: Activation only in case of faults

o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input

Recovery blocks

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version
programming

Recovery
blocks

Error detection Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always
(active)

Only in case of fault
(passive)

Number of
tolerated faults

[(N-1)/2] N-1

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults
o Fault tolerance implemented by software

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

