Safety-critical systems: Evaluation

Systems Engineering course

András Vörös (slides: István Majzik)

Budapest University of Technology and Economics Department of Measurement and Information Systems

Overview of the goals

Previous topics

- Specification in safety-critical systems
 Safety function requirements
 - Safety integrity requirements
 - Dependability requirements
- Architecture design (patterns)
 - Error detection for fail-stop behavior
 - Fault tolerance for fail-operational behavior

Goals

- Safety critical systems study block
 - 1. Requirements in critical systems: Safety, dependability
 - 2. Architecture design (patterns) in critical systems
 - 3. Evaluation of system architecture
- Focus: Evaluation of the system architecture to ...
 - Analyze the causes of potential hazards
 - Analyze the effects of component faults
 - Estimate risk: Hazards with rate (probability) and severity
 - \rightarrow check with respect to tolerable hazard rate (THR)
 - Calculate reliability and availability

Learning objectives

Evaluation of hazards and fault effects

- Understand the role of architecture evaluation
- Know the typical techniques for the analysis
- Understand the method of risk estimation
- Perform evaluation of a concrete architecture

Evaluation of reliability and availability

- Know the reliability block diagram technique
- Understand the limitations of the technique
- Perform evaluation in canonical systems

Overview: Evaluation techniques

- Systematic analysis of hazard causes and fault effects (with risk estimation):
 - Fault tree analysis (FTA)
 - Event tree analysis (ETA)
 - Failure modes and effects analysis (FMEA)
- Quantitative reliability analysis:
 - Reliability block diagram (RBD) based calculation

Fault tree analysis

Introduction: Hazard analysis

- Goal: Analysis of the fault effects and the evolution of hazards
 - What are the causes for a hazard?
 - What are the effects of a component fault?
- Results:
 - Categorization of hazards
 - Rate of occurrence
 - Severity of consequences
 - Hazard catalogue
 - o Risk matrix

These results form the basis for risk reduction

Categorization of the techniques

- Cause-consequence view:
 - Forward (inductive): Analysis of the effects of faults and events
 - Backward (deductive): Analysis of the causes of hazards
- System hierarchy view:
 - Bottom-up: From the components (subsystems) to system level
 - Top-down: From the system level down to the components
- Systematic techniques are needed

Fault tree analysis

Analysis of the causes of system level hazards

- Top-down analysis
- Identifying the component level combinations of faults/events that may lead to hazard

Construction of the fault tree

- 1. Identification of the foreseen system level hazard: based on environment risks, standards, etc.
- Identification of intermediate events (pseudo-events): Boolean (AND, OR) combinations of lower-level events that may cause upper-level events
- 3. Identification of primary (basic) events: no further refinement is needed/possible

Set of elements in a fault tree

- Top level or intermediate event
- Primary (basic) event
- Event without further analysis
- Normal event (i.e., not a fault)
- **Conditional event**
- \bigcirc
- AND combination of events
- \bigcap
- OR combination of events
- K
- Voting gate: k out of n events

Fault tree example: Elevator

Voting gate

Qualitative analysis of the fault tree

- Fault tree reduction: Resolving intermediate events/pseudo-events using primary events → disjunctive normal form (OR on the top of the tree)
- Cut of the fault tree: AND combination of primary events
- Minimal cut set: No further reduction is possible
 Minimal cut: There is no other cut that is a subset
- Outputs of the analysis of the reduced fault tree:
 Single point of failure (SPOF)
 - Critical events that appear in several cuts

Original fault tree of the elevator example

Reduced fault tree of the elevator example

Quantitative analysis of the fault tree

- Basis: Probabilities of the primary events
 - Component level data, experience, or estimation
- Result: Probability of the system level hazard
 - Computing probability based on the probabilities of the primary events, depending on their combinations
 - AND gate: Product (if the events are independent)
 - Exact calculation: P{A and B} = P{A} · P{B|A}
 - OR gate: Sum (worst case estimation)
 - Exactly: P{A or B} = P{A} + P{B} P{A and B} <= P{A} + P{B}
 - Probability as time function can also be used in computations (e.g., reliability, availability)
- Typical problems:
 - Correlated faults (not independent)
 - Handling of fault sequences

Fault tree of the elevator with probabilities

м й в с у в т в м

Event tree analysis

Event tree analysis

Forward (inductive) analysis: Investigates the effects of an initial event

- Initial event: component level fault/event
- Related events: faults/events of other components
 Ordering: causality, timing
 - Branches: depend on the occurrence of events
- Investigation of hazard occurrence "scenarios"
 - Path probabilities (based on branch probabilities)
- Advantages: Investigation of event sequences
 - Example: Checking protection systems (protection levels)
- Limits: Complexity, multiplicity of events

Event tree example: Reactor cooling

Event tree example: Reactor cooling

Exercise: Evaluation of sensor subsystem

The temperature of a hot water storage is measured using two sensors.

- The two sensors may be faulty with probability p1 and p2, in this case they report the invalid temperature +255°C.
- The faults of the sensors are checked by the controller performing an acceptance check.
- The sensor with p1 fault probability is the primary sensor. The secondary sensor is read only in case of detecting the fault of the primary sensor.
- In case of a faulty sensor, the acceptance check always detects the fault.

However, due to a program bug, the acceptance check detects a sensor fault with probability **pe** even in case of a **non-faulty sensor**.

Exercise: Evaluation of sensor subsystem

The temperature of a hot water storage is measured using two sensors.

- The two sensors may be faulty with probability p1 and p2, in this case they report the invalid temperature +255°C.
- The faults of the sensors are checked by the **controller** performing an **acceptance check**.
- The sensor with p1 fault probability is the primary sensor. The secondary sensor is read only in case of detecting the fault of the primary sensor.
- In case of a faulty sensor, the acceptance check always detects the fault.
 However, due to a program bug, the acceptance check detects a sensor fault with probability pe even in case of a non-faulty sensor.

Draw the event tree belonging to this system and calculate the probabilities of the scenarios.

The events:

- Initial event: Starting the temperature measurement
- Further events: Faults of the sensors, fault of the acceptance checking

Ordering of events:

- Primary sensor
- Acceptance checking
- Secondary sensor
- Acceptance checking

- \leftarrow may be faulty with probability p1
- ← may be faulty with probability pe (in case of a non-faulty sensor)
- \leftarrow may be faulty with probability p2
- ← may be faulty with probability pe (in case of a non-faulty sensor)

Solution of the exercise

Event tree:

Failure of the service at system level: $pe \cdot pe + pe \cdot p2 + p1 \cdot pe + p1 \cdot p2$

Failure modes and effects analysis

Item and	Failure mode		Effect of failure mode		Criticality of effect by			
(% chance of failure)	Description	Chance	Description	Chance	sever V.Hi	ity typ High	e x 1l Med	je Low
Main stack (0.2%)	Corruption Overflow	15% 60%	Data loss System crash Shutdown System crash	24% 66% 90% 10%	180	495 300	2700	
	Underflow	25%	Warning	98%				1225
Total					180	795	2700	1225

Failure modes and effects analysis (FMEA)

- Systematic investigation of component failure modes and their effects
 - Updated regularly in each design phase
- Advantages:
 - Known faults of components are included
 - Criticalities of effects can also be estimated (FMECA)

	Frequency of Occurrence of a Hazardous Event	RISK LEVELS			
Daily to monthly	FREQUENT (FRE)	Undesirable (UND)	Intolerable (INT)	Intolerable (INT)	Intolerable (INT)
Monthly to yearly	PROBABLE (PRO)	Tolerable (TOL)	Undesirable (UND)	Intolerable (INT)	Intolerable (INT)
Between once a year and once per 10 years	OCCASIONAL (OCC)	Tolerable (TOL)	Undesirable (UND)	Undesirable (UND)	Intolerable (INT)
Between once per 10 years and once per 100 years	REMOTE (REM)	Negligible (NEG)	Tolerable (TOL)	Undesirable (UND)	Undesirable (UND)
Less than once per 100 years	IMPROBABLE (IMP)	Negligible (NEG)	Negligible (NEG)	Tolerable (TOL)	Tolerable (TOL)
	INCREDIBLE (INC)	Negligible (NEG)	Negligible (NEG)	Negligible (NEG)	Negligible (NEG)
		INSIGNIFICANT (INS)	MARGINAL (MAR)	CRITICAL (CRI)	CATASTROPHIC (CAT)
		Severity Levels of Hazard Consequence			

Example: Aircraft brake

FMEA Ref.	ltem	Potential failure mode	Potential cause(s) / mechanism	Mission Phase	Local effects of failure	Next higher level effect	System Level End Effect
1.1.1.1	Brake Manifold Ref. Designator 2b, channel A, O-ring	Internal Leakage from Channel A to B	a) O-ring Compression Set (Creep) failure b) surface damage during assembly	Landing	Decreased pressure to main brake hose	No Left Wheel Braking	Severely Reduced Aircraft deceleration on ground and side drift. Partial loss of runway position control. Risk of collision

(P) Probability (estimate)	(S) Severity	(D) Detection (Indications to Operator, Maintainer)	Detection Dormancy Period	Risk Level P*S (+D)	Actions for further Investigation / evidence	Mitigation / Requirements
(C) Occasional	(V) Catastrophic (this is the worst case)	(1) Flight Computer and Maintenance Computer will indicate "Left Main Brake, Pressure Low"	Built-In Test interval is 1 minute	Unacceptable	Check Dormancy Period and probability of failure	Require redundant independent brake hydraulic channels and/or Require redundant sealing and Classify O- ring as Critical Part Class 1

Reliability block diagrams

Boole model for calculating dependability

- Boolean model of components
 - Two states: Fault-free (good) or faulty (bad)
 - No dependences regarding faults or repairing
- Relation of components from the point of view of dependability: What kind of redundancy is used?
 - Serial connection:
 - If both components are necessary for the operation of the system
 - I.e., the components are not redundant
 - Parallel connection:
 - If the components may replace each other in case of their failure
 - I.e., the components are redundant

The connection may depend on the failure modes

Reliability block diagram

- Blocks: Components
- Connections: Serial or parallel (redundancy)
- Paths: Operational system configurations
 - The system is operational (correct) if there is a path from the start point to the end point of the diagram through fault-free components

Overview: Typical system configurations

- Serial system model: no redundancy
- Parallel system model: redundancy (replication)

- Complex canonical system: redundant subsystems
- M faulty out of N components: Majority voting (TMR)

Previous topic: Attributes of components

 $-\int \lambda(t)dt$

- Data from product sheet / reliability handbook:
 Fault rate: $\lambda(t)$ MTFF/MTBF = $1/\lambda(t)$
- Reliability of components: $r(t) = e^{i}$

Serial system

Parallel system

P(A AB)=P(A)P(B) if independent Reliability:

$$1 - r_{R}(t) = \prod_{i=1}^{N} (1 - r_{i}(t))$$

Uniform N components:

$$r_{R}(t) = 1 - (1 - r_{K}(t))^{N}$$

MTFF (without explanation):

$$MTFF = \frac{1}{\lambda} \sum_{i=1}^{N} \frac{1}{i}$$

Complex canonical system

Calculation on the basis of parts with basic connections
 Example: Calculation of asymptotic availability

 $A = 0.95 \cdot 0.99 \cdot [1 - (1 - 0.7)^3] \cdot [1 - (1 - 0.75)^2] \cdot 0.9$

M faulty out of N components

N replicated components;

If M or more components faulty: the system is faulty

$$r_{R} = \sum_{i=0}^{M-1} P \left\{ \text{"there are i faults"} \right\}$$
$$r_{R} = \sum_{i=0}^{M-1} \binom{N}{i} (1-r)^{i} \cdot r^{N-i}$$

Application: Majority voting (TMR): N=3, M=2

$$r_{R} = \sum_{i=0}^{1} \binom{3}{i} (1-r)^{i} \cdot r^{3-i} = \binom{3}{0} (1-r)^{0} \cdot r^{3} + \binom{3}{1} (1-r)^{1} \cdot r^{2} = 3r^{2} - 2r^{3}$$
$$MTFF = \int_{0}^{\infty} r_{R}(t)dt = \int_{0}^{\infty} (3r^{2} - 2r^{3})dt = \frac{5}{6} \cdot \frac{1}{\lambda}$$
Less than in the case of a single component!

Reliability vs. Availability

Typical case:

Reliability requires safe state in case of a porblem

- False positive is better than false negative
- Availability requires operation in case of a problem
 - False positive also reduces availability

Reliability vs. Availability

Typical case:

Reliability requires safe state in case of a porblem

- False positive is better than false negative
- Availability requires operation in case of a problem
 - False positive also reduces availability

Reliability vs. Availability

Typical case:

Reliability requires safe state in case of a porblem

- False positive is better than false negative
- Availability requires operation in case of a problem
 - False positive also reduces availability

Exercise: Availability of a SCADA system

A SCADA system consists of the following components: 4 data collector units, 3 control units, 2 supervisory servers, 1 logging server and the corresponding network

- The 2 supervisory servers are in a hot redundancy structure.
- Critical data collector and control units are in a hot redundancy structure:
 2 data collector units and 2 control units are hot redundant units
- The reliability data of the system components are given as follows (measured in hours, with independent repairs in case of faults):

	Data coll. unit	Control unit	Superv. server	Logging server	Network
MTTF	9000	12000	4500	2000	30000
MTTR	2	3	5	1	2

- Evaluate the system level availability using a reliability block diagram.
- Compute the asymptotic availability of the system using the above given parameters of the system components.
- How many hours is the system out of service per year?

Solution of the exercise

Reliability block diagram:

Component level asymptotic availability: A = MTTF / (MTTF+MTTR)

	Data coll. unit (D)	Control unit (C)	Superv. server (S)	Logging server (L)	Network (N)
MTTF	9000	12000	4500	2000	30000
MTTR	2	3	5	1	2
А	AD=0.99977	AC=0.99975	AS=0.99889	AL=0.9995	AN=0.99993

System level asymptotic availability:

AD*AD*(1-(1-AD)*(1-AD))*KC*(1-(1-AC)*(1-AC))*(1-(1-AS)*(1-AS))*AL*AN = 0.9987362Approx. 11 hours out of service per year

Summary

Hazard analysis

- Fault tree analysis
- Event tree analysis
- Failure modes and effects analysis (FMEA)

o Risk matrix:

- Severity level of hazard consequences
- Rate of hazard occurrence
- Reliability analysis

Reliability block diagrams

